Journal of Nondestructive Evaluation

, Volume 32, Issue 1, pp 93–103

Relation Between Magnetic Barkhausen Noise and Hardness for Jominy Quench Tests in SAE 4140 and 6150 Steels

  • Freddy A. Franco
  • M. F. R. González
  • M. F. de Campos
  • L. R. Padovese
Article

Abstract

The nondestructive Magnetic Barkhausen Noise (MBN) technique was applied for the evaluation of SAE 4140 and SAE 6150 steels after a Jominy end-quench test. Microstructures were also characterized by SEM (Scanning Electron Microscope) and hardness tests. MBN measurements were performed on the same sample regions at three excitation frequencies. Different parameters of the measured signals (signal peak position and height, and Root mean square) were calculated. A relationship between mechanical hardness and MBN parameters was found for both materials, with the best correlation coefficient being found in low excitation frequency range.

Keywords

Barkhausen noise Hardness measurement Microstructure Magnetic non-destructive testing 

References

  1. 1.
    Hosford, W.F.: Physical Metallurgy. Taylor & Francis, London (2005) Google Scholar
  2. 2.
    Fong, H.S.: Further observations on the Jominy end quench test. J. Mater. Process. Technol. 38(1–2), 221–225 (1993) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zehtab Yazdi, A., Sajjadi, S.A., Zebarjad, S.M., Moosavi Nezhad, S.M.: Prediction of hardness at different points of Jominy specimen using quench factor analysis method. J. Mater. Process. Technol. 199, 124–129 (2008) CrossRefGoogle Scholar
  4. 4.
    Vermeulen, W.G., Van der Wolk, P.J., Weijer, A.P., van der Zwaag, S.: Prediction of Jominy hardness profiles of steels using artificial neural networks. J. Mater. Eng. Perform. 5(1), 57–63 (1996) CrossRefGoogle Scholar
  5. 5.
    Overshott, K.J.: Magnetism: it is permanent. IEE Proc. A 138(1), 22–30 (1991) Google Scholar
  6. 6.
    Costa, L.F.T., Girotto, F., Baiotto, R., Gerhardt, G., de Campos, M.F., Missell, F.P.: Influence of microstructural constituents on the hysteresis curves in 0.2%C and 0.45%C steels. J. Phys. Conf. Ser. 303, 012029 (2011) CrossRefGoogle Scholar
  7. 7.
    Barkhausen, H.: Two with help of new repeating rediscovered appearances by H. Barkhausen—the silence during unmagnetising of iron. Phys. Z. 20, 401–403 (1919) Google Scholar
  8. 8.
    Monlevade, E.F., de Campos, M.F., Franco, F.A., Capo-Sanchez, J., Goldenstein, H., Padovese, L.R.: Magnetic Barkhausen noise in quenched carburized nickel-steels. IEEE Trans. Magn. 48, 1465–1468 (2012) CrossRefGoogle Scholar
  9. 9.
    ASM Handbook, vol. 4: Heat Treating, 10th edn. (1991) Google Scholar
  10. 10.
    de Campos, M.F., Campos, M.A., Landgraf, F.J.G., Padovese, L.R.: Anisotropy study of grain oriented steels with magnetic Barkhausen noise. J. Phys. Conf. Ser. 303, 012020 (2011) CrossRefGoogle Scholar
  11. 11.
    Hwang, D.G., Kim, H.C.: The influence of plastic deformation on Barkhausen effects and magnetic properties in mild steel. J. Phys. D, Appl. Phys. 21, 1807–1813 (1988) CrossRefGoogle Scholar
  12. 12.
    O’Sullivan, D., Cotterell, M., Tanner, D.A., Meszaros, I.: Characterisation of ferritic stainless steel by Barkhausen techniques. Nondestruct. Test. Eval. Int. 37, 489–496 (2004) Google Scholar
  13. 13.
    Capó Sánchez, J., de Campos, M.F., Padovese, L.R.: Magnetic Barkhausen emission in lightly deformed AISI 1070 steel. J. Magn. Magn. Mater. 324, 11–14 (2012) CrossRefGoogle Scholar
  14. 14.
    Moorthy, V., Shaw, B.A., Mountford, P., Hopkins, P.: Magnetic Barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised En36 steel. Acta Mater. 53, 4997–5006 (2005) CrossRefGoogle Scholar
  15. 15.
    Gauthier, J., Krause, T.W., Atherton, D.L.: Measurement of residual stress in steel using the magnetic Barkhausen noise technique. Nondestruct. Test. Eval. Int. 31, 23–31 (1998) Google Scholar
  16. 16.
    Altpeter, I., Dobmann, G., Kroning, M., Rabung, M., Szielasko, S.: Micro-magnetic evaluation of micro residual stresses of the IInd and IIIrd order. Nondestruct. Test. Eval. Int. 42, 283–290 (2009) Google Scholar
  17. 17.
    Hauk, V.: Structural and Residual Stress Analysis by Nondestructive Methods. Elsevier Science, Amsterdam (1997) MATHGoogle Scholar
  18. 18.
    de Campos, M.F., Sablik, M.J., Landgraf, F.J.G., Hirsch, T.K., Machado, R., Magnabosco, R., Gutierrez, J., Bandyopadhyay, A.: Effect of rolling on the residual stresses and magnetic properties of a 0.5 % Si electrical steel. J. Magn. Magn. Mater. 320, e377–e380 (2008) CrossRefGoogle Scholar
  19. 19.
    Lindgren, M., Lepisto, T.: Effect of cyclic deformation on Barkhausen noise in mild steel. Nondestruct. Test. Eval. Int. 36, 401–409 (2003) Google Scholar
  20. 20.
    Meyendorf, N., Roesner, H.: Depth profiling of machined surfaces using cross correlation of Barkhausen noise butterfly curves. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Quantitative Nondestructive Evaluation, vol. 22, pp. 1697–1704. American Institute of Physics, New York (2003) Google Scholar
  21. 21.
    Capo-Sanchez, J., Perez-Benitez, J., Padovese, L.R.: Analysis of the stress dependent magnetic easy axis in ASTM 36 steel by the magnetic Barkhausen noise. Nondestruct. Test. Eval. Int. 40, 168–172 (2007) Google Scholar
  22. 22.
    Stefanita, C.G., Atherton, D.L., Clapham, L.: Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel. Acta Mater. 48, 3545–3551 (2000) CrossRefGoogle Scholar
  23. 23.
    Alberteris Campos, M., Capo-Sanchez, J., Benitez, J.P., Padovese, L.R.: Characterization of the elastic-plastic region in AISI/SAE 1070 steel by the magnetic Barkhausen noise. Nondestruct. Test. Eval. Int. 41, 656–659 (2008) Google Scholar
  24. 24.
    Anglada-Rivera, J., Padovese, L.R., Capo-Sanchez, J.: Magnetic Barkhausen noise and hysteresis loop in commercial carbon steel: influence of applied tensile stress and grain size. J. Magn. Magn. Mater. 231, 299–306 (2001) CrossRefGoogle Scholar
  25. 25.
    Moorthy, V., Shaw, B.A., Hopkins, P.: Magnetic Barkhausen emission technique for detecting the overstressing during bending fatigue in case-carburised En36 steel. Nondestruct. Test. Eval. Int. 38, 159–166 (2005) Google Scholar
  26. 26.
    Palma, E.S., Mansur, T.R., Silva, S.F., Alvarenga, A.: Fatigue damage assessment in AISI 8620 steel using Barkhausen noise. Int. J. Fatigue 27, 659–665 (2005) CrossRefGoogle Scholar
  27. 27.
    Altpeter, I.: Nondestructive evaluation of cementite content in steel and white cast iron using inductive Barkhausen noise. J. Nondestruct. Eval. 15, 45–60 (1996) CrossRefGoogle Scholar
  28. 28.
    Gur, C.H., Cam, I.: Comparison of magnetic Barkhausen noise and ultrasonic velocity measurements for microstructure evaluation of SAE 1040 and SAE 4140 steels. Mater. Charact. 58, 447–454 (2007) CrossRefGoogle Scholar
  29. 29.
    Davut, K., Gur, C.H.: Monitoring the microstructural changes during tempering of quenched SAE 5140 steel by magnetic Barkhausen noise. J. Nondestruct. Eval. 26, 107–113 (2007) CrossRefGoogle Scholar
  30. 30.
    Kleber, X., Hug, A., Merlin, J., Soler, M.: Ferrite-martensite steels characterization using magnetic Barkhausen noise measurements. ISIJ Int. 44, 1033–1039 (2004) CrossRefGoogle Scholar
  31. 31.
    Kaplan, M., Gur, C.H., Erdogan, M.: Characterization of dual-phase steels using magnetic Barkhausen noise technique. J. Nondestruct. Eval. 26, 79–87 (2007) CrossRefGoogle Scholar
  32. 32.
    de Campos, M.F., Franco, F.A., Santos, R., Silva, F.S., Ribeiro, S.B., Lins, J.F.C., Padovese, L.R.: Magnetic Barkhausen noise in quenched carburized steels. J. Phys. Conf. Ser. 303, 012030 (2011) CrossRefGoogle Scholar
  33. 33.
    ASTM-A225: Standard Test Methods for Determining Hardenability of Steel. ASTM Standards (1999) Google Scholar
  34. 34.
    Kinser, E.R., Lo, C.C.H., Barsic, A.J., Jiles, D.C.: Modeling microstructural effects on Barkhausen emission in surface-modified magnetic materials. IEEE Trans. Magn. 41, 3292–3294 (2005) CrossRefGoogle Scholar
  35. 35.
    Jiles, D.C.: Dynamics of domain magnetization and the Barkhausen effect. Czechoslov. J. Phys. 50, 893–924 (2000) CrossRefGoogle Scholar
  36. 36.
    Szczyglowski, J.: Influence of eddy currents on magnetic hysteresis loops in soft magnetic materials. J. Magn. Magn. Mater. 223, 97–102 (2001) CrossRefGoogle Scholar
  37. 37.
    Chwastek, K., Szczyglowski, J., Najgebauer, M.: A direct search algorithm for estimation of Jiles–Atherton hysteresis model parameters. Mater. Sci. Eng. B 131, 22–26 (2006) CrossRefGoogle Scholar
  38. 38.
    de Campos, M.F., Teixeira, J.C., Landgraf, F.J.G.: The optimum grain size for minimizing the energy losses in iron. J. Magn. Magn. Mater. 301, 94–99 (2006) CrossRefGoogle Scholar
  39. 39.
    Haller, T.R., Kramer, J.J.: Observation of dynamic domain size variation in a silicon-iron alloy. J. Appl. Phys. 41, 1034–1035 (1970) CrossRefGoogle Scholar
  40. 40.
    Haller, T.R., Kramer, J.J.: Model for reverse-domain nucleation in ferromagnetic conductors. J. Appl. Phys. 41, 1036–1037 (1970) CrossRefGoogle Scholar
  41. 41.
    Mitra, A., Jiles, D.C.: Magnetic Barkhausen emissions in as-quenched Fe-Si-B amorphous alloy. J. Magn. Magn. Mater. 168, 169–176 (1997) CrossRefGoogle Scholar
  42. 42.
    Pala, J., Bydzovsky, J.: Dependence of Barkhausen noise in plastically deformed steel on frequency and nonlinearity of magnetizing field. Acta Phys. Pol. A 113, 23–26 (2008) Google Scholar
  43. 43.
    Stupakov, O., Pala, J., Takagi, T., Uchimoto, T.: Governing conditions of repeatable Barkhausen noise response. J. Magn. Magn. Mater. 321, 2956–2962 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Freddy A. Franco
    • 1
  • M. F. R. González
    • 2
  • M. F. de Campos
    • 3
  • L. R. Padovese
    • 4
  1. 1.Sociedade Educacional de Santa CatarinaMestrado em Engenharia MecânicaJoinvilleBrazil
  2. 2.Department of Metallurgical and Materials Engineering, Engineering SchoolUniversity of São Paulo, SPSão PauloBrazil
  3. 3.EEIMVR—Universidade Federal FluminenseVolta RedondaBrazil
  4. 4.Department of Mechanical Engineering, Engineering SchoolUniversity of São Paulo, SPSão PauloBrazil

Personalised recommendations