Journal of Nondestructive Evaluation

, Volume 32, Issue 1, pp 81–92 | Cite as

Numerical and Experimental Study of Crack Depth Measurement in Concrete Using Diffuse Ultrasound

  • Matthias Seher
  • Chi-Won In
  • Jin-Yeon Kim
  • Kimberly E. Kurtis
  • Laurence J. Jacobs


This paper presents a combined numerical and experimental study on the diffuse ultrasonic measurement technique for determining the depth of surface breaking cracks in concrete. A finite element (FE) model for the dissipative diffusion in a two-dimensional domain with a surface breaking crack is developed using a commercial FE package; for this purpose, the dissipation term is eliminated by a simple change of variables. Three concrete blocks with a crack depth between 25.4 mm to 101.6 mm are prepared. Diffuse ultrasonic measurements are performed on uncracked and cracked concrete blocks, from which the diffuse energy evolution curves are obtained. The basic material parameters of the hardened concrete, i.e. the diffusivity and dissipation, are retrieved, which are needed for the numerical simulations. The crack depths are then determined by comparing the experimental and numerical arrival times of the average diffuse ultrasonic energy. Various geometrical configurations that arise in real-world concrete structures are simulated including an inclined crack, a partially closed crack, two parallel cracks, and a crack with an underlying reinforcement bar. The objective is to investigate the possible limitations of the diffuse ultrasonic measurement technique when implemented in real concrete structures. Finally, it is shown that the time of flight (TOF) of the average diffuse ultrasonic energy constitutes the theoretical basis of the present diffuse ultrasonic measurement of macroscopic cracks and therefore the present diffuse ultrasonic method forms another kind of TOF technique.


Diffuse ultrasound Finite element analysis Crack depth measurement Concrete 


  1. 1.
    Anugonda, P., Wiehn, J., Turner, J.: Diffusion of ultrasound in concrete. Ultrasonics 39, 429–435 (2001) CrossRefGoogle Scholar
  2. 2.
    Becker, J., Jacobs, L., Qu, J.: Characterization of cement-based materials using diffuse ultrasound. J. Eng. Sci., 1478–1484 (2003) Google Scholar
  3. 3.
    Cowan, M., Beaty, K., Page, J., Liu, Z., Sheng, P.: Group velocity of acoustic waves in strongly scattering media: dependence on the volume fraction of scatterers. Phys. Rev. E 58, 6626–6636 (1998) CrossRefGoogle Scholar
  4. 4.
    Deroo, F., Kim, J.-Y., Qu, J., Sabra, K., Jacobs, L.J.: Detection of damage in concrete using diffuse ultrasound. J. Acoust. Soc. Am. 127(6), 3315–3318 (2010) CrossRefGoogle Scholar
  5. 5.
    Hevin, G., Abraham, O., Pedersen, H., Campillo, M.: Characterisation of surface cracks with Rayleigh waves: a numerical model. NDT E Int. 31, 289–297 (1998) CrossRefGoogle Scholar
  6. 6.
    Kee, S.-H., Zhu, J.: Effects of sensor locations on air-coupled surface wave transmission measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(2), 427–436 (2011) CrossRefGoogle Scholar
  7. 7.
    Kee, S.-H., Zhu, J.: Surface wave transmission measurements across distributed surface-breaking cracks using air-coupled sensors. J. Sound Vib. 330, 5333–5344 (2011) CrossRefGoogle Scholar
  8. 8.
    Landis, E.N., Shah, S.P.: Frequency-dependent stress wave attenuation in cement-based materials. J. Eng. Mech. 121, 737–743 (1995) CrossRefGoogle Scholar
  9. 9.
    Lin, Y.C., Su, W.C.: Use of stress waves for determining the depth of surface-opening cracks in concrete structures. ACI Mater. J. 93(5), 494–505 (1996) Google Scholar
  10. 10.
    Lin, Y.C., Liou, T.H., Tsai, W.H.: Determining crack depth and measurement errors using time-of-flight diffraction techniques. ACI Mater. J. 96(2), 190–195 (1999) Google Scholar
  11. 11.
    Page, J.H., Schriemer, H.P., Jones, I.P., Sheng, P., Weitz, D.A.: Classical wave propagation in strongly scattering media. Phys. Rev. A 241, 66–71 (1997) Google Scholar
  12. 12.
    Popovics, J.S., Song, W.-J., Ghandehari, M., Subramaniam, K.V., Achenbach, J.D., Shah, S.P.: Application of surface wave transmission measurements for crack depth determination in concrete. ACI Mater. J. 97, 127–135 (2000) Google Scholar
  13. 13.
    Quiviger, A., Payan, C., Chaix, J.-F., Garnier, V., Salin, J.: Effect of the presence and size of a real macro-crack on diffuse ultrasound in concrete. NDT E Int. 45, 128–132 (2012) CrossRefGoogle Scholar
  14. 14.
    Ramamoorthy, S.K., Kane, Y., Turner, J.: Ultrasound diffusion for crack depth determination in concrete. J. Acoust. Soc. Am. 115(2), 523–529 (2004) CrossRefGoogle Scholar
  15. 15.
    Sansalone, M., Lin, J.M., Streett, W.B.: Determining the depth of surface-opening cracks using impact-generated stress waves and time-of-flight technique. ACI Mater. J. 95(2), 168–177 (1998) Google Scholar
  16. 16.
    Sheng, P.: Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena. Academic Press, San Diego (2006) Google Scholar
  17. 17.
    Shin, S.W., Zhu, J., Min, J., Popovics, J.S.: Crack depth estimation for concrete structures using spectral energy transmission of surface waves. ACI Mater. J. 105, 510–516 (2008) Google Scholar
  18. 18.
    Shurr, D., Kim, J.-Y., Sabra, K.G., Jacobs, L.J.: Damage detection in concrete using coda wave interferometry. NDT E Int. 44, 728–735 (2011) CrossRefGoogle Scholar
  19. 19.
    Song, W.-J., Popovics, J.S., Aldrin, J.C., Shah, S.P.: Measurement of surface wave transmission coefficient across surface-breaking cracks and notches in concrete. J. Acoust. Soc. Am. 113, 717–725 (2003) CrossRefGoogle Scholar
  20. 20.
    Weaver, R.L.: Ultrasonics in an aluminum foam. Ultrasonics 36, 435–442 (1998) CrossRefGoogle Scholar
  21. 21.
    Zhang, Z.Q., Jones, I.P., Schriemer, H.P., Page, J.H., Weitz, D.A., Sheng, P.: Wave transport in random media: the ballistic to diffusive transition. Phys. Rev. E 60, 4843–4850 (1999) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Matthias Seher
    • 1
  • Chi-Won In
    • 1
  • Jin-Yeon Kim
    • 1
  • Kimberly E. Kurtis
    • 1
  • Laurence J. Jacobs
    • 1
    • 2
  1. 1.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.GWW School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations