Journal of Nondestructive Evaluation

, Volume 31, Issue 3, pp 225–244

Sparse Deconvolution Methods for Ultrasonic NDT

Application on TOFD and Wall Thickness Measurements
  • Florian Boßmann
  • Gerlind Plonka
  • Thomas Peter
  • Oliver Nemitz
  • Till Schmitte
Open Access


In this work we present two sparse deconvolution methods for nondestructive testing. The first method is a special matching pursuit (MP) algorithm in order to deconvolve the mixed data (signal and noise), and thus to remove the unwanted noise. The second method is based on the approximate Prony method (APM). Both methods employ the sparsity assumption about the measured ultrasonic signal as prior knowledge. The MP algorithm is used to derive a sparse representation of the measured data by a deconvolution and subtraction scheme. An orthogonal variant of the algorithm (OMP) is presented as well. The APM technique also relies on the assumption that the desired signals are sparse linear combinations of (reflections of) the transmitted pulse. For blind deconvolution, where the transducer impulse response is unknown, we offer a general Gaussian echo model whose parameters can be iteratively adjusted to the real measurements. Several test results show that the methods work well even for high noise levels. Further, an outlook for possible applications of these deconvolution methods is given.


Time of flight diffraction Matching pursuit Orthogonal matching pursuit Approximate Prony method Sparse blind deconvolution Parameter estimation Sparse representation 


  1. 1.
    Demirli, S., Saniie, J.: Model-based estimation of ultrasonic echoes. Part I: analysis and algorithms. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(3), 787–802 (2001) CrossRefGoogle Scholar
  2. 2.
    Kaaresen, K.F., Bolviken, E.: Blind deconvolution of ultrasonic traces accounting for pulse variance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(3), 564–573 (1999) CrossRefGoogle Scholar
  3. 3.
    Mendel, J.M.: Optimal Seismic Deconvolution: An Estimation-Based Approach. Academic Press, New York (1983) Google Scholar
  4. 4.
    Walden, A.T.: Non-Gaussian reflectivity, entropy, and deconvolution. Geophysics 50(12), 2862–2888 (1985) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ciang, H.-H., Nikias, C.L.: Adaptive deconvolution and identification of nonminimum phase FIR systems based on cumulants. IEEE Trans. Autom. Control 35(1), 36–47 (1990) CrossRefGoogle Scholar
  6. 6.
    Nandi, A.K., Mämpel, D., Roscher, B.: Comparative study of deconvolution algorithms with applications in non-destructive testing. IEE Dig. 145, 1/1–1/6 (1995) Google Scholar
  7. 7.
    Neelamani, R., Choi, H., Baraniuk, R.: ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 418–432 (2004) MathSciNetGoogle Scholar
  8. 8.
    Herrera, R.H., Orozco, R., Rodriguez, M.: Wavelet-based deconvolution of ultrasonic signals in nondestructive evaluation. J. Zhejiang Univ. Sci. 7(10), 1748–1756 (2006) MATHCrossRefGoogle Scholar
  9. 9.
    Olofsson, T.: Computationally efficient sparse deconvolution of B-scan images. In: Proc. IEEE Ultrason. Symp., pp. 540–543 (2005) Google Scholar
  10. 10.
    Olofsson, T., Wennerström, E.: Sparse deconvolution of B-Scan images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1634–1641 (2007) CrossRefGoogle Scholar
  11. 11.
    Demirli, S., Saniie, J.: Model-based estimation of ultrasonic echoes. Part II: nondestructive evaluation applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(3), 803–811 (2001) CrossRefGoogle Scholar
  12. 12.
    Ziskind, I., Wax, M.: Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process. 36(10), 1553–1560 (1988) MATHCrossRefGoogle Scholar
  13. 13.
    Wu, C.F.J.: On the convergence properties of the EM algorithm. Ann. Stat. 11(1), 95–103 (1983) MATHCrossRefGoogle Scholar
  14. 14.
    Chung, P.J., Böhme, J.F.: Comparative convergence analysis of EM and SAGE algorithms in DOA estimation. IEEE Trans. Signal Process. 49(12), 2940–2949 (2001) CrossRefGoogle Scholar
  15. 15.
    Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993) MATHCrossRefGoogle Scholar
  16. 16.
    Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50, 2231–2242 (2004) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Peter, T., Potts, D., Tasche, M.: Nonlinear approximation by sums of exponentials and translates. SIAM J. Sci. Comput. 33(4), 1920–1944 (2011) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Ruiz-Reyes, N., Vera-Candeas, P., Curpián-Alonso, J., Mata-Campos, R., Cuevas-Martinez, J.C.: New matching pursuit-based algorithm for SNR improvement in ultrasonic NDT. NDT E Int. 38, 453–458 (2005) CrossRefGoogle Scholar
  19. 19.
    Ruiz-Reyes, N., Vera-Candeas, P., Curpián-Alonso, J., Cuevas-Martinez, J.C., Blanco-Claraco, J.L.: High-resolution pursuit for detecting flaw echoes close to the material surface in ultrasonic NDT. NDT E Int. 39, 487–492 (2006) CrossRefGoogle Scholar
  20. 20.
    Mor, E., Azoulay, A., Mayer, A.: A matching pursuit method for approximate overlapping ultrasonic echoes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(7), 1996–2004 (2010) CrossRefGoogle Scholar
  21. 21.
    Boßmann, F.: Entwicklung einer automatisierten Auswertung von bildgebenden Ultraschallverfahren. Diploma thesis, University of Duisburg-Essen, Germany (2009) Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Florian Boßmann
    • 1
  • Gerlind Plonka
    • 1
  • Thomas Peter
    • 1
  • Oliver Nemitz
    • 2
  • Till Schmitte
    • 2
  1. 1.Institute for Numerical and Applied MathematicsUniversity of GöttingenGöttingenGermany
  2. 2.Salzgitter Mannesmann Forschung GmbHDuisburgGermany

Personalised recommendations