Journal of Nondestructive Evaluation

, Volume 31, Issue 1, pp 17–33 | Cite as

Characterization of Material Properties of 2xxx Series Al-Alloys by Non Destructive Testing Techniques

  • Fawad Tariq
  • Nausheen Naz
  • Rasheed Ahmed Baloch
  • Faisal


2xxx series Al-alloys are widely employed in structural applications due to their good mechanical properties. During heat treatment of these alloys, solution treated parts sometimes mixed with age hardened parts during handling. This result in difficulty in distinguishing between solution treated and aged parts of various grades. Moreover, it is also necessary to separate improper aged parts from properly treated parts. The traditional methods of characterization of different heat treated parts are hardness, tension testing and microscopy, however these are destructive in nature and sometimes not desired particularly for finished products. The main purpose of this paper is characterization of material properties of 2xxx series Al-alloys by eddy current and ultrasonic NDE techniques so that the inspection can be carried out effectively in the shortest possible time. Three wrought Al-alloys of 2xxx series (AA 2014, AA 2024 and AA 2219) were homogenized followed by solution heat treatment and age hardening treatments at specific temperatures for 1–16 h. The changes in hardness and microstructure during heat treatments were determined by traditional material characterization methods and then correlated with electrical conductivity, sound velocity and attenuation coefficient obtained through Nondestructive Evaluation (NDE) techniques. Results demonstrated an excellent correlation between hardness and sound velocity, whereas extend of aging can be easily predicted by electrical conductivity, and attenuation coefficient measurement. Investigation suggested a way towards the non-destructive detection and characterization of material properties when conventional testing methods are not applicable.


AA 2024 AA 2014 AA 2219 Aluminum alloys Precipitation hardening Ultrasonic testing Eddy current testing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hatch, J.E.: Aluminum: Properties and Physical Metallurgy. ASM, Metals Park (1984) Google Scholar
  2. 2.
    Doherthy, R.D.: In: Cahn, R.W., Haasen, P. (eds.) Physical Metallurgy. Amsterdam, Elsevier (1996) Google Scholar
  3. 3.
    Bassani, P., Gariboldi, E., Vimercati, G.: Calorimetric analyses on aged Al–4.4Cu–0.5Mg–0.9Si–0.8Mn alloy (AA 2014 grade). J. Therm. Anal. Calorim. 87(1), 247–253 (2007) CrossRefGoogle Scholar
  4. 4.
    Badini, C., Marino, F., Verne, E.: Calorimetric study on precipitation path in 2024 alloy and its SiC composite. Mater. Sci. Eng. A 191, 185–191 (1995) CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, D.J., Laughlin, D.E.: Phase relations and precipitation in Al–Mg–Si Alloys with Cu Additions. Prog. Mater. Sci. 49, 389–410 (2004) CrossRefGoogle Scholar
  6. 6.
    Sheppard, T.: Extrusion of Aluminium Alloys, vol. 5, pp. 205–245. Kluwer Academic, Dordrecht (1999) Google Scholar
  7. 7.
    Raj, B.: NDE methodologies for characterization of defects, stresses and microstructure in pressure vessels and pipes. Int. J. Press. Vessels Piping 73(2), 133–146 (1997) CrossRefGoogle Scholar
  8. 8.
    Jayakumar, T., Raj, B., Willems, H., Arnold, W.: Influence of microstructure on ultrasonic velocity in Nimonic alloy PE16. In: Review of Progress in Quantitative. NDE, vol. 10b, pp. 1693–1700. Plenum Press, New York (1991) Google Scholar
  9. 9.
    Jayakumar, T.: Microstructural characterisation in metallic materials using ultrasonic and magnetic methods. Ph.D. Thesis, University of Saarland, Saarbruecken, Germany (1997) Google Scholar
  10. 10.
    Kumar, A., Choudhary, B.K., Jayakumar, T., Bhanu, K., Rao, S., Raj, B.: Influence of long term thermal ageing on ultrasonic velocity in 9Cr–1Mo ferritic steel. Mater. Sci. Technol. 19(5), 637–641 (2003) CrossRefGoogle Scholar
  11. 11.
    Kumar, A., Shankar, V., Bhanu, K., Rao, S., Jayakumar, T., Raj, B.: Correlation of microstructure and mechanical properties with ultrasonic velocity in the Nickel base superalloy Inconel 625. Philos. Mag. A 82(13), 2529–2542 (2002) CrossRefGoogle Scholar
  12. 12.
    Hutchinson, B., Moss, B., Smith, A., Astill, A., Scruby, C., Engberg, G., Bjorklund, J.: Online characterisation of steel structures in hot strip mill using laser ultrasonic measurements. Ironmak. Steelmak. 29(1), 77–80 (2002) CrossRefGoogle Scholar
  13. 13.
    Rajkumar, K.V., Kumar, A., Jayakumar, T., Raj, B., Ray, K.K.: Characterization of aging behavior in M250 grade maraging steel using ultrasonic measurements. Metall. Mater. Trans. A 38A, 236–243 (2008) Google Scholar
  14. 14.
    Banerjee, S., Shah, B.K.: Characterization of industrial materials. In: Sridhar, G., Chowdhary, S.G., Goswami, N.G. (eds.) Material Characterization Techniques—Principals and Applications, pp. 1–15 (1999) Google Scholar
  15. 15.
    Kruger, S.E., Lamouche, G., Monchalin, J.P., Kolarik, R. II, Jeskey, G., Choquet, M.: On-line monitoring of wall thickness and austenite grain size on a seamless tubing production line at the Timken Co. Iron Steel Technol. 2, 25–31 (2005) Google Scholar
  16. 16.
    Dubois, M., Militzer, M., Moreau, A., Bussiere, J.: A new technique for the quantitative real-time of austenite grain growth in steel. Scr. Mater. 42, 867–874 (2000) CrossRefGoogle Scholar
  17. 17.
    Palanichamy, P., Joseph, A., Jayakumar, T., Raj, B.: Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel. NDT E Int. 28(3), 179 (1995) CrossRefGoogle Scholar
  18. 18.
    Murav’ev, V.V.: Effects of heat treatment on the speed of ultrasound in aluminum alloys. Sov. J. Nondestruct. Test. 25(11), 832–839 (1989) MathSciNetGoogle Scholar
  19. 19.
    Rosen, M., Ives, L., Biancaniello, F., Mehrabian, R.: Correlation between ultrasonic and hardness measurements in aged aluminum alloy 2024. Mater. Sci. Eng. 74, 1–10 (1985) CrossRefGoogle Scholar
  20. 20.
    Rosen, M., Horowitz, E., Fick, S., Reno, R.C., Mehrabian, R.: An investigation of the precipitation-hardening process in aluminum alloy 2219 by means of sound wave velocity and ultrasonic attenuation. Mater. Sci. Eng. 53(2), 163–177 (1982) CrossRefGoogle Scholar
  21. 21.
    Vasudevan, M., Palanichamy, P.: Characterization of microstructural changes during annealing of cold worked austenitic stainless steel using ultrasonic velocity measurements and correlation with mechanical properties. J. Mater. Eng. Perform. 11(2), 169–179 (2002) CrossRefGoogle Scholar
  22. 22.
    Murav’ev, V.V.: Interrelationship of the velocity of an ultrasonic wave in steels and their heat cycles. Sov. J. Nondestruct. Test. 25(2), 135–137 (1989) MathSciNetGoogle Scholar
  23. 23.
    Dubois, M., Moreau, A., Bussière, J.F.: Ultrasonic velocity measurements during phase transformations in steels using laser-ultrasonics. J. Appl. Phys. 89, 6487–6495 (2001) CrossRefGoogle Scholar
  24. 24.
    Shark, L.K., Yu, C.: Automatic estimation of ultrasonic attenuation for porosity evaluation in composite materials. In: Proc. of 15th World Conference on NDT (2000) Google Scholar
  25. 25.
    Daniel, I.M., Wooh, S.C., Komsky, I.: Quantitative Porosity characterization of composite materials by means of ultrasonic attenuation measurements. J. Nondestruct. Eval. 11(1), 1–8 (1992) CrossRefGoogle Scholar
  26. 26.
    Mansour, T.M.: Ultrasonic inspection of spot welds in thin-gage steel. Mater. Eval. 46, 650–658 (1988) Google Scholar
  27. 27.
    Rokhlin, S.I., Meng, S., Adler, L.: In-process ultrasonic evaluation of spot welds. Mater. Eval. 47, 935–943 (1989) Google Scholar
  28. 28.
    Vary, A.: Ultrasonic Nondestructive evaluation, microstructure, and mechanical property interrelations. NASA Technical Memorandum 86876, Lewis Research Center, Cleveland Ohio (1984) Google Scholar
  29. 29.
    Kumar, A., Jayakumar, T., Raj, B.: Ultrasonic spectral analysis for microstructural characterization in austenitic and ferritic steels. Philos. Mag. A 80(11), 2469–2487 (2000) CrossRefGoogle Scholar
  30. 30.
    Nanekar, P.P., Shah, B.K.: Characterization of material properties by ultrasonics. BARC Newsl. 249, 25–38 (2003) Google Scholar
  31. 31.
    Nanekar, P.P.: Non-destructive characterization of ceramics and concrete structure. In: Testing and Quality Control. ASM India Section, Mumbai (2001) Google Scholar
  32. 32.
    Smith, R.L.: Ultrasonic attenuation, microstructure and ductile to brittle transition temperature in Fe–C alloys. Mater. Eval. 41, 219–222 (1983) Google Scholar
  33. 33.
    Kwun, S.I., Hong, S.T., Choo, W.Y.: Ultrasonic nondestructive evaluation of microstructure and strength of carbon steels. J. Mater. Sci. Lett. 19, 1453–1456 (2000) CrossRefGoogle Scholar
  34. 34.
    Vasudevan, M., Palanichamy, P., Venkadesan, S.: A novel technique for characterizing annealing behavior. Scr. Metall. Mater. 30(11), 1479–1483 (1994) CrossRefGoogle Scholar
  35. 35.
    Jayakumar, T., Mukhopadhyay, C.K., Kasi Viswanathan, K.V., Raj, B.: Acoustic and magnetic methods for characterisation of microstructures and tensile deformation in AISI type 304 stainless steel. Trans. Indian Inst. Mat. 51(6), 485–509 (1998) Google Scholar
  36. 36.
    Palanichamy, P., Vasudevan, M., Jayakumar, T., Venugopal, S., Raj, B.: Ultrasonic velocity measurements for characterizing the annealing behavior of cold worked austenitic stainless steel. NDT E Int. 28(3), 179–185 (1995) CrossRefGoogle Scholar
  37. 37.
    Dobmann, G.: Non-destructive characterization of materials: a growing demand for describing damage and service life relevant ageing process in plant components. Nucl. Eng. Des. 171, 95–112 (1997) CrossRefGoogle Scholar
  38. 38.
    Raj, B.: NDE methodologies for characterization of defects, stresses and microstructure in pressure vessels and pipes. Int. J. Press. Vessels Piping 73(2), 133–146 (1997) CrossRefGoogle Scholar
  39. 39.
    Theiner, W.A.: Non-destructive analysis of the structure of pressure vessel steels by micromagnetic testing techniques. Nucl. Eng. Des. 76(3), 251–260 (1983) CrossRefGoogle Scholar
  40. 40.
    Dobmann, G.: Nondestructive characterization of materials (ultrasonic and magnetic techniques) for strength and toughness prediction and the detection of early creep damage. Nucl. Eng. Des. 157, 137–158 (1992) CrossRefGoogle Scholar
  41. 41.
    Kruger, S.E.: Hydrogen damage detection by ultrasonic spectral analysis. NDT E Int. 32, 275–281 (1999) CrossRefGoogle Scholar
  42. 42.
    Ikuta, E.: In: Proc. of the 13th International Conference in the Nuclear and Pressure Vessel Industries, Kyoto, Japan, pp. 285–289 (1985) Google Scholar
  43. 43.
    Berger, H.: Nondestructive characterization of materials. Mater. Eval. 50, 299–305 (1992) Google Scholar
  44. 44.
    Rosen, M., Horowits, E., Swartzendruber, L., Fick, S., Mehrabian, R.: The aging process in aluminum alloy 2024 studied by means of eddy currents. Mater. Sci. Eng. 53(2), 191–198 (1982) CrossRefGoogle Scholar
  45. 45.
    Tiryakioglu, M., Campbell, J., Staley, J.T.: Hardness-strength relationships in cast Al–Si–Mg alloys. Mater. Sci. Forum 331–337, 295–300 (2000) CrossRefGoogle Scholar
  46. 46.
    Brasche, L.J.H., Bracci, D.J., Jiles, D.C., Buck, O.: Correlation of mechanical properties with non-destructive evaluation measurements in Al–Li alloys. Mater. Sci. Eng. A 119, 7–15 (1989) CrossRefGoogle Scholar
  47. 47.
    Koch, G.H., Kolijn, D.T.: The heat treatment of the commercial aluminum alloy 7075. J. Heat Treat. 1(2), 3–14 (1979) CrossRefGoogle Scholar
  48. 48.
    Salazar-Guapuriche, M.A., Zhao, Y.Y., Pitman, A., Greene, A.: Correlation of strength with hardness and electrical conductivity for aluminium alloy 7010. Mater. Sci. Forum 519–521, 853–858 (2006) CrossRefGoogle Scholar
  49. 49.
    Naimon, E.R., Ledbetter, H.M., Weston, W.F.: Low-temperature elastic properties of four wrought and annealed aluminum alloys. J. Mater. Sci. 10, 1309–1316 (1975) CrossRefGoogle Scholar
  50. 50.
    Rajendran, V., Muthukumaran, S., Jayakumar, T., Palanichamy, P., Raj, B.: Ultrasonic studies for microstructural characterization of A98090 aluminum-lithium alloy. Mater. Eval. 63(8), 837–842 (2005) Google Scholar
  51. 51.
    Ambardar, R., Jayakumar, T., Pathak, S.D., Prabhakar, O.: Ultrasonic velocity measurement to assess casting quality. Insight 38(7), 502–508 (1996) Google Scholar
  52. 52.
    Sarkar, S., Wells, M.A., Poole, W.J.: Softening behaviour of cold rolled continuous cast and ingot cast aluminum alloy AA 5754. Mater. Sci. Eng. A 421(1–2), 276–285 (2006) Google Scholar
  53. 53.
    Raeisinia, B., Poole, W.J.: Electrical resistivity measurements: a sensitive tool for studying aluminium alloys. Mater. Sci. Forum 519–521, 1391–1396 (2006) CrossRefGoogle Scholar
  54. 54.
    Hagemaier, D.J.: Evaluation of heat-damage to aluminum aircraft structures. Mater. Eval. 40(9), 962–969 (1982) Google Scholar
  55. 55.
    Vedula, K.M., Heckel, R.W.: Spheroidization of binary Fe–C alloys over a range of temperatures. Metall. Trans. 1, 9 (1970) Google Scholar
  56. 56.
    Ying, C.F., Truell, R.: Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J. Appl. Phys. 27, 1086 (1956) MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Gür, C.H., Yildiz, I.: Determining the impact toughness of age-hardened 2024 AL-alloy by nondestructive measurements. In: Proc. of the 16th World Conference on NDT, Montreal, Canada (2004) Google Scholar
  58. 58.
    Papadakis, E.P.: Ultrasonic attenuation and velocity in SAE 52100 steel quenched from various temperatures. Metall. Trans. 1, 1053 (1970) Google Scholar
  59. 59.
    Rosen, M.: Eddy current analysis of precipitation kinetics in aluminum alloys. Metall. Trans. A 20A, 605 (1989) Google Scholar
  60. 60.
    Rosen, M.: In: Vary, A. (ed.) Materials Analysis by Ultrasonics, p. 79. Noyes, Park Ridge (1987) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Fawad Tariq
    • 1
  • Nausheen Naz
    • 1
  • Rasheed Ahmed Baloch
    • 1
  • Faisal
    • 1
  1. 1.Materials Research and Testing LaboratoryPakistan Space and Upper Atmosphere Research Commission (SUPARCO)KarachiPakistan

Personalised recommendations