Advertisement

Was That a Scream? Listener Agreement and Major Distinguishing Acoustic Features

  • Jay W. SchwartzEmail author
  • Jonathan W. M. Engelberg
  • Harold Gouzoules
Original Paper

Abstract

Human screams have been suggested to comprise a salient and readily identified call type, yet few studies have explored the degree to which people agree on what constitutes a scream, and the defining acoustic structure of screams has not been fully determined. In this study, participants listened to 75 human vocal sounds, representing both a broad acoustical range and array of emotional contexts, and classified each as to whether it was a scream or not. Participants showed substantial agreement on which sounds were considered screams, consistent with the idea of screams as a basic call type. Agreement on classifications was related to participant gender, emotion processing accuracy, and empathy. To characterize the acoustic structure of screams, we measured the stimuli on 27 acoustic parameters. Principal components analysis and generalized linear mixed modeling indicated that classification as a scream was positively correlated with 3 acoustic dimensions: one corresponding to high pitch and roughness, another corresponding to wide fundamental frequency variability and narrow interquartile range bandwidth, and a third positively correlated with peak frequency slope. Twenty-six stimuli were agreed upon by > 90% of participants to be screams, but these were not acoustically homogeneous, and others evoked mixed responses. These results suggest that while screams might represent a salient and possibly innate call type, they also exhibit perceptual and acoustic gradation, perhaps reflecting the wide range of emotions and contexts in which they occur.

Keywords

Scream Non-linguistic vocalization Acoustics Roughness Forced-choice task 

Notes

Acknowledgements

We thank Caitlin Clark, Alexander Gouzoules, Leah Friedman, Elizabeth Harlan, and NooRee Lee for assistance with stimulus collection, and Anna Duncan for assistance with stimulus and data collection. We also thank Anna M. Hardin and three anonymous reviewers for their comments on earlier drafts of this manuscript.

Funding

JWS was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE – 1343012. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

10919_2019_325_MOESM1_ESM.pdf (432 kb)
Supplementary material 1 (PDF 432 kb)
10919_2019_325_MOESM2_ESM.xlsx (34 kb)
Supplementary material 2 (XLSX 33 kb)

References

  1. Ackermann, H., Hage, S. R., & Ziegler, W. (2014). Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective. Behavioral and Brain Sciences,37(6), 529–546.  https://doi.org/10.1017/S0140525X13003099.CrossRefPubMedGoogle Scholar
  2. Anikin, A., Bååth, R., & Persson, T. (2018). Human non-linguistic vocal repertoire: Call types and their meaning. Journal of Nonverbal Behavior,49(2), 53–80.  https://doi.org/10.1007/s10919-017-0267-y.CrossRefGoogle Scholar
  3. Anikin, A., & Persson, T. (2017). Nonlinguistic vocalizations from online amateur videos for emotion research: A validated corpus. Behavior Research Methods,49(2), 758–771.  https://doi.org/10.3758/s13428-016-0736-y.CrossRefPubMedGoogle Scholar
  4. Arnal, L. H., Flinker, A., Kleinschmidt, A., Giraud, A. L., & Poeppel, D. (2015). Human screams occupy a privileged niche in the communication soundscape. Current Biology,25(15), 2051–2056.  https://doi.org/10.1016/j.cub.2015.06.043.CrossRefPubMedGoogle Scholar
  5. Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders,34(2), 163–175.  https://doi.org/10.1023/B:JADD.0000022607.19833.00.CrossRefPubMedGoogle Scholar
  6. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language,68, 255–278.  https://doi.org/10.1016/j.jml.2012.11.001.CrossRefGoogle Scholar
  7. Belin, P. (2006). Voice processing in human and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences,361(1476), 2091–2107.  https://doi.org/10.1098/rstb.2006.1933.CrossRefGoogle Scholar
  8. Belin, P., & Zatorre, R. J. (2015). Neurobiology: Sounding the alarm. Current Biology,25(18), R805–R806.  https://doi.org/10.1016/j.cub.2015.07.027.CrossRefPubMedGoogle Scholar
  9. Besel, L. D. S., & Yuille, J. C. (2010). Individual differences in empathy: The role of facial expression recognition. Personality and Individual Differences,49(2), 107–112.  https://doi.org/10.1016/J.PAID.2010.03.013.CrossRefGoogle Scholar
  10. Bioacoustics Research Program. (2014). Raven Pro: Interactive sound analysis software (version 1.5) [Computer software]. Ithaca, NY: The Cornell Lab of Ornithology. Retrieved March 27, 2019 from http://www.birds.cornell.edu/raven.
  11. Boersma, P., & Weenink, D. (2013). Praat: Doing phonetics by computer (Version 5.3.51). Retrieved January 9, 2018 from http://www.praat.org/.
  12. Briefer, E. F. (2012). Vocal expression of emotions in mammals: Mechanisms of production and evidence. Journal of Zoology,7(1), 1–20.  https://doi.org/10.1098/rsbl.2011.0832.CrossRefGoogle Scholar
  13. Cheney, D. L. (1977). The acquisition of rank and the development of reciprocal alliances among free-ranging immature baboons. Behavioral Ecology and Sociobiology,2(3), 203–318.  https://doi.org/10.1007/BF00299742.CrossRefGoogle Scholar
  14. Cohen, Y. E., Hauser, M. D., & Russ, B. E. (2006). Spontaneous processing of abstract categorical information in the ventrolateral prefrontal cortex. Biology Letters,2(2), 261–265.  https://doi.org/10.1098/rsbl.2005.0436.CrossRefPubMedPubMedCentralGoogle Scholar
  15. de Waal, F. B. M., & van Hooff, J. A. R. A. M. (1981). Side-directed communication and agonistic interactions in chimpanzees. Behaviour,77(3), 164–198.  https://doi.org/10.1163/156853981X00211.CrossRefGoogle Scholar
  16. Decety, J. (2011). The neuroevolution of empathy. Annals of the New York Academy of Sciences,1231(1), 35–45.  https://doi.org/10.1111/j.1749-6632.2011.06027.x.CrossRefPubMedGoogle Scholar
  17. DeCoster, J., Gallucci, M., & Iselin, A.-M. R. (2011). Best practices for using median splits, artificial categorization, and their continuous alternatives. Journal of Experimental Psychopathology,2(2), 197–209.  https://doi.org/10.5127/jep.008310.CrossRefGoogle Scholar
  18. Driver, P. M., & Humphries, D. A. (1969). The significance of the high-intensity alarm call in captured passerines. Ibis,111(2), 243–244.  https://doi.org/10.1111/j.1474-919X.1969.tb02531.x.CrossRefGoogle Scholar
  19. Dunn, J. C., & Smaers, J. B. (2018). Neural correlates of vocal repertoire in primates. Frontiers in Neuroscience,12, 534.  https://doi.org/10.3389/fnins.2018.00534.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Engelberg, J. W. M., & Gouzoules, H. (2018). The credibility of acted screams: Implications for emotional communication research. Quarterly Journal of Experimental Psychology.  https://doi.org/10.1177/1747021818816307.CrossRefGoogle Scholar
  21. Engelberg, J. W. M., Schwartz, J. W., & Gouzoules, H. (2019). Do human screams permit individual recognition? PeerJ,7, e7087.  https://doi.org/10.7717/peerj.7087.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ficken, M. S., Ficken, R. W., & Witkin, S. R. (1978). Vocal repertoire of the black-capped chickadee. The Auk,95, 34–48.  https://doi.org/10.2307/4085493.CrossRefGoogle Scholar
  23. Filippi, P., Congdon, J. V., Hoang, J., Bowling, D. L., Reber, S. A., Pašukonis, A., et al. (2017). Humans recognize emotional arousal in vocalizations across all classes of terrestrial vertebrates: Evidence for acoustic universals. Proceedings of the Royal Society B: Biological Sciences,284(1859), 20170990.  https://doi.org/10.1098/rspb.2017.0990.CrossRefPubMedGoogle Scholar
  24. Fischer, J., Wadewitz, P., & Hammerschmidt, K. (2016). Structural variability and communicative complexity in acoustic communication. Animal Behaviour,134, 229–237.  https://doi.org/10.1016/j.anbehav.2016.06.012.CrossRefGoogle Scholar
  25. Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin,76(1), 378–382.  https://doi.org/10.1037/h0031619.CrossRefGoogle Scholar
  26. Gerosa, L., Valenzise, G., Tagliasacchi, M., Antonacci, F., & Sarti, A. (2007). Scream and gunshot detection in noisy environments. In 15th European Signal Processing Conference (pp. 1216–1220).Google Scholar
  27. Gifford, G. W., Hauser, M. D., & Cohen, Y. E. (2003). Discrimination of functionally referential calls by laboratory-housed rhesus macaques: Implications for neuroethological studies. Brain, Behavior and Evolution,61, 213–224.  https://doi.org/10.1159/000070704.CrossRefPubMedGoogle Scholar
  28. Gifford, G. W., MacLean, K. A., Hauser, M. D., & Cohen, Y. E. (2005). The neurophysiology of functionally meaningful categories: Macaque ventrolateral prefrontal cortex plays a critical role in spontaneous categorization of species-specific vocalizations. Journal of Cognitive Neuroscience,17(9), 1471–1482.  https://doi.org/10.1162/0898929054985464.CrossRefPubMedGoogle Scholar
  29. Golan, O., Baron-Cohen, S., Hill, J. J., & Rutherford, M. D. (2007). The “Reading the Mind in the Voice” test-revised: A study of complex emotion recognition in adults with and without autism spectrum conditions. Journal of Autism and Developmental Disorders,37(6), 1096–1106.  https://doi.org/10.1007/s10803-006-0252-5.CrossRefPubMedGoogle Scholar
  30. Gouzoules, H., & Gouzoules, S. (1995). Recruitment screams of pigtail monkeys (Macaca nemestrina): Ontogenetic perspectives. Behaviour,132(5), 431–450.  https://doi.org/10.1163/156853995X00658.CrossRefGoogle Scholar
  31. Gouzoules, H., & Gouzoules, S. (2000). Agonistic screams differ among four species of macaques: The significance of motivation-structural rules. Animal Behaviour,59(3), 501–512.  https://doi.org/10.1006/anbe.1999.1318.CrossRefPubMedGoogle Scholar
  32. Gouzoules, S., Gouzoules, H., & Marler, P. (1984). Rhesus monkey (Macaca mulatta) screams: Representational signalling in the recruitment of agonistic aid. Animal Behaviour,32(1), 182–193.  https://doi.org/10.1016/S0003-3472(84)80336-X.CrossRefGoogle Scholar
  33. Green, J. A., Whitney, P. G., & Potegal, M. (2011). Screaming, yelling, whining, and crying: Categorical and intensity differences in vocal expressions of anger and sadness in children’s tantrums. Emotion,11(5), 1124–1133.  https://doi.org/10.1037/a0024173.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hammerschmidt, K., & Fischer, J. (1998). The vocal repertoire of Barbary macaques: A quantitative analysis of a graded signal system. Ethology,104, 203–216.  https://doi.org/10.1111/j.1439-0310.1998.tb00063.x.CrossRefGoogle Scholar
  35. Hansen, J. H. L., Nandwana, M. K., & Shokouhi, N. (2017). Analysis of human scream and its impact on text-independent speaker verification. The Journal of the Acoustical Society of America,141(4), 2957–2967.  https://doi.org/10.1121/1.4979337.CrossRefPubMedGoogle Scholar
  36. Högstedt, G. (1983). Adaptation unto death: Function of fear screams. The American Naturalist,121(4), 562–570.  https://doi.org/10.1086/284083.CrossRefGoogle Scholar
  37. Iacobucci, D., Posavac, S. S., Kardes, F. R., Schneider, M. J., & Popovich, D. L. (2015). Toward a more nuanced understanding of the statistical properties of a median split. Journal of Consumer Psychology,25(4), 652–665.  https://doi.org/10.1016/j.jcps.2014.12.002.CrossRefGoogle Scholar
  38. Jürgens, U. (2009). The neural control of vocalization in mammals: A review. Journal of Voice.  https://doi.org/10.1016/j.jvoice.2007.07.005.CrossRefPubMedGoogle Scholar
  39. Kret, M. E., & De Gelder, B. (2012). A review on sex differences in processing emotional signals. Neuropsychologia,50(7), 1211–1221.  https://doi.org/10.1016/j.neuropsychologia.2011.12.022.CrossRefGoogle Scholar
  40. Laffitte, P., Sodoyer, D., Tatkeu, C., & Girin, L. (2016). Deep neural networks for automatic detection of screams and shouted speech in subway trains. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (pp. 6460–6464).  https://doi.org/10.1109/icassp.2016.7472921.
  41. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics,33(1), 159–174.  https://doi.org/10.2307/2529310.CrossRefGoogle Scholar
  42. Latoszek, B. B. V., Maryn, Y., Gerrits, E., & De Bodt, M. (2018). A meta-analysis: Acoustic measurement of roughness and breathiness. Journal of Speech, Language, and Hearing Research,61(2), 298–323.  https://doi.org/10.1044/2017_JSLHR-S-16-0188.CrossRefGoogle Scholar
  43. Lei, B., & Mak, M. W. (2016). Robust scream sound detection via sound event partitioning. Multimedia Tools and Applications,75, 6071–6089.  https://doi.org/10.1007/s11042-015-2555-z.CrossRefGoogle Scholar
  44. Li, T., Horta, M., Mascaro, J. S., Bijanki, K., Arnal, L. H., Adams, M., et al. (2018). Explaining individual variation in paternal brain responses to infant cries. Physiology & Behavior,193(1), 43–54.  https://doi.org/10.1016/j.physbeh.2017.12.033.CrossRefGoogle Scholar
  45. Maxwell, S. E., & Delaney, H. D. (1993). Bivariate median splits and spurious statistical significance. Psychological Bulletin,113(1), 181–190.  https://doi.org/10.1037/0033-2909.113.1.181.CrossRefGoogle Scholar
  46. McPherson, M. J., & McDermott, J. H. (2018). Diversity in pitch perception revealed by task dependence. Nature Human Behaviour,2(1), 52–66.  https://doi.org/10.1038/s41562-017-0261-8.CrossRefPubMedGoogle Scholar
  47. Nandwana, M. K., Ziaei, A., & Hansen, J. H. L. (2015). Robust unsupervised detection of human screams in noisy acoustic environments. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 161–165). IEEE.  https://doi.org/10.1109/icassp.2015.7177952.
  48. Owings, D. H., & Morton, E. S. (1998). Animal vocal communication: A new approach. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. Owren, M. J. (2008). GSU Praat tools: Scripts for modifying and analyzing sounds using Praat acoustics software. Behavior Research Methods,40(3), 822–829.  https://doi.org/10.3758/BRM.40.3.822.CrossRefPubMedGoogle Scholar
  50. Owren, M. J., Amoss, R. T., & Rendall, D. (2011). Two organizing principles of vocal production: Implications for nonhuman and human primates. American Journal of Primatology,73(6), 530–544.  https://doi.org/10.1002/ajp.20913.CrossRefPubMedGoogle Scholar
  51. Owren, M. J., & Bachorowski, J. A. (2007). Measuring emotion-related vocal acoustics. In J. Coan & J. Allen (Eds.), The handbook of emotion elicitation and assessment (pp. 239–266). Oxford: Oxford University Press.Google Scholar
  52. Price, T., Wadewitz, P., Cheney, D., Seyfarth, R., Hammerschmidt, K., & Fischer, J. (2015). Vervets revisited: A quantitative analysis of alarm call structure and context specificity. Scientific Reports,5, 1–11.  https://doi.org/10.1038/srep13220.CrossRefGoogle Scholar
  53. R Core Team. (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved October 15, 2018 from http://www.r-project.org/.
  54. Rand, A. S., & Ryan, M. J. (1981). The adaptive significance of a complex vocal repertoire in a neotropical frog. Zeitschrift für Tierpsychologie,57(3–4), 209–214.  https://doi.org/10.1111/j.1439-0310.1981.tb01923.x.CrossRefGoogle Scholar
  55. Rohwer, S., Fretwell, S. D., & Tuckfield, R. C. (1976). Distress screams as a measure of kinship in birds. American Midland Naturalist,96(2), 418–430.  https://doi.org/10.2307/2424080.CrossRefGoogle Scholar
  56. Sauter, D. A., & Eimer, M. (2010). Rapid detection of emotion from human vocalizations. Journal of Cognitive Neuroscience,22(3), 474–481.  https://doi.org/10.1162/jocn.2009.21215.CrossRefPubMedGoogle Scholar
  57. Sauter, D. A., Eisner, F., Ekman, P., & Scott, S. K. (2010). Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proceedings of the National Academy of Sciences,107(6), 2408–2412.  https://doi.org/10.1073/pnas.0908239106.CrossRefGoogle Scholar
  58. Schröder, M. (2003). Experimental study of affect bursts. Speech Communication,40(1–2), 99–116.  https://doi.org/10.1016/S0167-6393(02)00078-X.CrossRefGoogle Scholar
  59. Schwartz, J. W., & Gouzoules, H. (2019). Decoding human screams: Perception of emotional arousal from pitch and duration. Behaviour,156(13–14), 1283–1307.  https://doi.org/10.1163/1568539x-00003566.CrossRefGoogle Scholar
  60. Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour.  https://doi.org/10.1016/S0003-3472(80)80097-2.CrossRefGoogle Scholar
  61. Slocombe, K. E., Townsend, S. W., & Zuberbühler, K. (2009). Wild chimpanzees (Pan troglodytes schweinfurthii) distinguish between different scream types: Evidence from a playback study. Animal Cognition,12(3), 441–449.  https://doi.org/10.1007/s10071-008-0204-x.CrossRefPubMedGoogle Scholar
  62. Slocombe, K. E., & Zuberbühler, K. (2005). Agonistic screams in wild chimpanzees (Pan troglodytes schweinfurthii) vary as a function of social role. Journal of Comparative Psychology,119(1), 67–77.  https://doi.org/10.1037/0735-7036.119.1.67.CrossRefPubMedGoogle Scholar
  63. Tallet, C., Linhart, P., Policht, R., Hammerschmidt, K., Šimeček, P., Kratinova, P., et al. (2013). Encoding of situations in the vocal repertoire of piglets (Sus scrofa): A comparison of discrete and graded classifications. PLoS ONE.  https://doi.org/10.1371/journal.pone.0071841.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Vassilakis, P. N. (2007). SRA: A web-based research tool for spectral and roughness analysis of sound signals. In: Proceedings SMC’07, 4th Sound and Music Computing Conference (pp. 319–325).  https://doi.org/10.1121/1.4777277.CrossRefGoogle Scholar
  65. Vassilakis, P. N., & Fitz, K. (2007). SRA: A web-based research tool for spectral and roughness analysis of sound signals. In: Supported by a Northwest Academic computing consortium grant to J. Middleton: Eastern Washington University.  https://doi.org/10.1121/1.4777277.CrossRefGoogle Scholar
  66. Wadewitz, P., Hammerschmidt, K., Battaglia, D., Witt, A., Wolf, F., & Fischer, J. (2015). Characterizing vocal repertoires—Hard vs. soft classification approaches. PLoS ONE,10(4), e0125785.  https://doi.org/10.1371/journal.pone.0125785.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zuberbühler, K., Cheney, D. L., & Seyfarth, R. M. (1999). Conceptual semantics in a nonhuman primate. Journal of Comparative Psychology,113(1), 33–42.  https://doi.org/10.1037/0735-7036.113.1.33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychologyEmory UniversityAtlantaUSA

Personalised recommendations