Journal of Nonverbal Behavior

, 35:305 | Cite as

Assessing the Ability to Recognize Facial and Vocal Expressions of Emotion: Construction and Validation of the Emotion Recognition Index

Original Paper

Abstract

Despite extensive research on emotional expression, there are few validated tests of individual differences in emotion recognition competence (generally considered as part of nonverbal sensitivity and emotional intelligence). This paper reports the development of a rapid test of emotion recognition ability, the Emotion Recognition Index (ERI), consisting of two subtests: one for facial and one for vocal emotion recognition. The rationale underlying the test’s construction, item selection, and analysis are described and a major validation study with more than 3,500 professional candidates, providing stable norms, is reported. Additional analyses concern differences for gender, age, and education, as well as correlations with cognitive intelligence and personality factors. Moreover, a separate validation study with a student sample reports the correlations of the ERI with some of the major published tests in this area, demonstrating satisfactory construct validity. Correlations between ERI scores and the position of candidates in the organizational hierarchy suggest that recognition competence might be might contribute to predicting career advancement.

Keywords

Emotional intelligence Emotional competence Personality Facial/vocal emotion expression Emotion recognition Test development 

Supplementary material

10919_2011_115_MOESM1_ESM.doc (390 kb)
Supplementary material 1 (DOC 390 kb)

References

  1. Banse, R., & Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70, 614–636.PubMedCrossRefGoogle Scholar
  2. Bänziger, T., Grandjean, D., & Scherer, K. R. (2009). Emotion recognition from expressions in face, voice, and body: The multimodal emotion recognition test (MERT). Emotion, 9, 691–704.PubMedCrossRefGoogle Scholar
  3. Biehl, M., Matsumoto, D., Ekman, P., Hearn, V., Heider, K., Kudoh, T., et al. (1997). Matsumoto and Ekman’s Japanese and Caucasian Facial Expressions of Emotion (JACFEE): Reliability data and cross-national differences. Journal of Nonverbal Behavior, 21, 3–21.CrossRefGoogle Scholar
  4. Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110, 305–314.CrossRefGoogle Scholar
  5. Boyle, G. J. (1991). Does item homogeneity indicate internal consistency or item redundancy in psychometric scales? Personality and Individual Differences, 12, 291–294.CrossRefGoogle Scholar
  6. Cattell, R. B. (1978). Scientific use of factor analysis in behavioral and life sciences. New York, NY: Plenum Press.Google Scholar
  7. Ekman, P. (1972). Universals and cultural differences in facial expression of emotion. In J. R. Cole (Ed.), Nebraska symposium on motivation (Vol. 19, pp. 207–283). Lincoln: University of Nebraska Press.Google Scholar
  8. Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6, 169–200.CrossRefGoogle Scholar
  9. Ekman, P. (2007). Emotions revealed (2nd ed.). New York: Owl Books.Google Scholar
  10. Ekman, P., & Friesen, W. V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  11. Ekman, P., Friesen, W. V., O’Sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., Heider, K., et al. (1987). Universals and cultural differences in the judgments of facial expressions of emotion. Journal of Personality and Social Psychology, 53, 712–717.PubMedCrossRefGoogle Scholar
  12. Ekman, P., & Rosenberg, E. L. (2005). What the face reveals: Basic and applied studies of spontaneous expression using the Facial Action Coding System (FACS) (2nd ed.). New York, NY: Oxford University Press.Google Scholar
  13. Hall, J. A. (1978). Gender effects in decoding nonverbal cues. Psychological Bulletin, 85, 845–857.CrossRefGoogle Scholar
  14. Hall, J. A. (2001). The PONS test and the psychometric approach to measuring interpersonal sensitivity. In J. A. Hall & F. J. Bernieri (Eds.), Interpersonal sensitivity: Theory and measurement (pp. 143–160). Mahwah, NJ: Erlbaum.Google Scholar
  15. Hall, J. A., & Bernieri, F. J. (2001). Interpersonal sensitivity: Theory and measurement. Mahwah, NJ: Erlbaum.Google Scholar
  16. Izard, C. E. (1977). Human emotions. New York, NY: Plenum Press.Google Scholar
  17. Joseph, D. L., & Newman, D. A. (2010). Emotional intelligence: An integrative meta-analysis and cascading model. Journal of Applied Psychology, 95, 54–78.PubMedCrossRefGoogle Scholar
  18. Matsumoto, D., LeRoux, J., Wilson-Cohn, C., Raroque, J., Kooken, K., Ekman, P., et al. (2000). A new test to measure emotion recognition ability: Matsumoto and Ekman’s Japanese and Caucasian Brief Affect Recognition Test (JACBART). Journal of Nonverbal Behavior, 24, 179–209.CrossRefGoogle Scholar
  19. Matthews, G., Zeidner, M., & Roberts, R. D. (Eds.). (2007). The science of emotional intelligence: Knowns and unknowns. New York, NY: Oxford University Press.Google Scholar
  20. Mayer, J. D., & Salovey, P. (1993). The intelligence of emotional intelligence. Intelligence, 17, 433–442.CrossRefGoogle Scholar
  21. Mayer, J. D., Salovey, P., Caruso, D. R., & Sitarenios, G. (2003). Measuring emotional intelligence with the MSCEIT V2.0. Emotion, 3, 97–105.PubMedCrossRefGoogle Scholar
  22. Mill, A., Allik, J., Realo, A., & Valk, R. (2009). Age-related changes in the ability to recognize sadness and anger: A cross-sectional study. Emotion, 9, 619–630.PubMedCrossRefGoogle Scholar
  23. Nowicki, S., & Duke, M. P. (1994). Individual differences in the nonverbal communication of affect: The diagnostic analysis of nonverbal accuracy. Journal of Nonverbal Behavior, 18, 9–35.CrossRefGoogle Scholar
  24. Rosenthal, R., Hall, J. A., DiMatteo, M. R., Rogers, P. L., & Archer, D. (1979). Sensitivity to nonverbal communication: The PONS test. Baltimore, MD: John Hopkins University Press.Google Scholar
  25. Russell, T. A., Chu, E., & Phillips, M. (2006). A pilot study to investigate the effectiveness of emotion recognition remediation in schizophrenia using the micro-expression training tool. British Journal of Clinical Psychology, 45, 579–583.PubMedCrossRefGoogle Scholar
  26. Scherer, K. R. (1971). Randomized splicing: A simple technique for masking speech content. Journal of Experimental Research in Personality, 5, 155–159.Google Scholar
  27. Scherer, K. R. (1984). On the nature and function of emotion: A component process approach. In K. R. Scherer & P. Ekman (Eds.), Approaches to emotion (pp. 293–317). Hillsdale, NJ: Erlbaum.Google Scholar
  28. Scherer, K. R. (1999). Universality of emotional expression. In D. Levinson, J. Ponzetti, & P. Jorgenson (Eds.), Encyclopedia of human emotions (Vol. 2, pp. 669–674). New York, NY: Macmillan.Google Scholar
  29. Scherer, K. R. (2001). Appraisal considered as a process of multi-level sequential checking. In K. R. Scherer, A. Schorr, & T. Johnstone (Eds.), Appraisal processes in emotion: Theory, methods, research (pp. 92–120). New York and Oxford: Oxford University Press.Google Scholar
  30. Scherer, K. R. (2007). Component models of emotion can inform the quest for emotional competence. In G. Matthews, M. Zeidner, & R. D. Roberts (Eds.), The science of emotional intelligence: Knowns and unknowns (pp. 101–126). New York, NY: Oxford University Press.Google Scholar
  31. Scherer, K. R. (2009). The dynamic architecture of emotion: Evidence for the component process model. Cognition and Emotion, 23, 1307–1351.CrossRefGoogle Scholar
  32. Scherer, K. R., Banse, R., & Wallbott, H. G. (2001). Emotion inferences from vocal expression correlate across languages and cultures. Journal of Cross-Cultural Psychology, 32, 76–92.CrossRefGoogle Scholar
  33. Scherer, K. R., Banse, R., Wallbott, H. G., & Goldbeck, T. (1991). Vocal cues in emotion encoding and decoding. Motivation and Emotion, 15, 123–148.CrossRefGoogle Scholar
  34. Scherer, K. R., & Bänziger, T. (2010). On the use of actor portrayals in research on emotional expression. In K. R. Scherer, T. Bänziger, & E. B. Roesch, (Eds.), Blueprint for affective computing: A sourcebook (pp. 166–178). Oxford: Oxford University Press.Google Scholar
  35. Scherer, K. R., & Ellgring, H. (2007). Are facial expressions of emotion produced by categorical affect programs or dynamically driven by appraisal? Emotion, 7, 113–130.PubMedCrossRefGoogle Scholar
  36. Scherer, K. R., Johnstone, T., & Klasmeyer, G. (2003). Vocal expression of emotion. In R. J. Davidson, K. R. Scherer, & H. Goldsmith (Eds.), Handbook of the affective sciences (pp. 433–456). New York, NY: Oxford University Press.Google Scholar
  37. Scherer, K. R., Wallbott, H. G., & Summerfield, A. B. (Eds.). (1986). Experiencing emotion: A cross-cultural study. Cambridge, England: Cambridge University Press.Google Scholar
  38. Schulze, R., & Roberts, R. D. (Eds.). (2005). Emotional intelligence: An international handbook. Cambridge, MA: Hogrefe & Huber.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Swiss Centre for Affective SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.SIGMA AssessmentGenevaSwitzerland

Personalised recommendations