Advertisement

Journal of Medical Systems

, 43:246 | Cite as

Assessment of users’ acceptability of a mobile-based embodied conversational agent for the prevention and detection of suicidal behaviour

  • Juan Martínez-MirandaEmail author
  • Ariadna Martínez
  • Roberto Ramos
  • Héctor Aguilar
  • Liliana Jiménez
  • Hodwar Arias
  • Giovanni Rosales
  • Elizabeth Valencia
Mobile & Wireless Health
  • 320 Downloads
Part of the following topical collections:
  1. Mobile & Wireless Health

Abstract

The use of embodied conversational agents in mental health has increased in the last years. Several studies exist describing the benefits and advantages of this technology as a complement to psychotherapeutic interventions for the prevention and treatment of depression, anxiety, or post-traumatic stress disorder, to name a few. A small number of these works implement capabilities in the virtual agent focused on the detection and prevention of suicidality risks. The work presented in this paper describes the development of an embodied conversational agent used as the main interface in HelPath, a mobile-based application addressed to individuals detected with any of the suicidal behaviours: ideation, planning or attempt. The main objective of HelPath is to continuously collect user’s information that, complemented with data from the electronic health record, supports the identification of risks associated with suicidality. Through the virtual agent, the users also receive information and suggestions based on cognitive behaviour therapy that would help them to maintain a healthy condition. The paper also presents the execution of an exploratory pilot to assess the acceptability, perception and adherence of users towards the virtual agent. The obtained results are presented and discussed, and some actions for further improvement of the embodied conversational agent are also identified.

Keywords

Embodied conversational agents Suicide prevention Mobile health Mental healthcare 

Notes

Acknowledgements

This work has been funded by the “Fondo Sectorial de Investigación en Salud y Seguridad Social – FOSISS/CONACyT” under the research project 2016-1-273163 “Desarrollo de nuevas tecnologías y su integración al sector salud como ayuda a una estrategia integral de prevención del suicidio”. The author also acknowledges the “Cátedras CONACyT” program funded by the Mexican National Research Council (CONACyT).

Funding

This study was funded by the Mexican National Research Council (CONACyT grant number 2016–1-273163).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Kenny, P., Parsons, T., Gratch, J., Rizzo, A., Virtual humans for assisted health care. In: Proceedings of the 1st International Conference on PErvasive Technologies Related to Assistive Environments. PETRA ‘08; ACM; pp. 1–4. doi: https://doi.org/10.1145/1389586.1389594, 2008.
  2. 2.
    Bickmore, T., Utami, D., Matsuyama, R., and Paasche-Orlow, M., Improving access to online health information with conversational agents: A randomized controlled experiment. Journal of Medical Internet Research 18(1):e1, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Philip, P., Bioulac, S., Sauteraud, A., Chaufton, C., Olive, J., Could a virtual human be used to explore excessive daytime sleepiness in patients? Presence: Teleoperators and Virtual Environments; 234; pp. 369–376, 2014Google Scholar
  4. 4.
    Sillice, M., Morokoff, P., Ferszt, G., Bickmore, T., Bock, B., Lantini, R., and Velicer, W., Using relational agents to promote exercise and sun protection: Assessment of participants’ experiences with two interventions. Journal of Medical Internet Research 20(2):e48, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Shaked, N., Avatars and virtual agents – relationship interfaces for the elderly. Healthcare Technology Letters 4(3):83–87, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Provoost, S., Lau, H., Ruwaard, J., and Riper, H., Embodied conversational agents in clinical psychology: A scoping review. Journal of Medical Internet Research 19(5):e151, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Dingli, A., and Seychell, D., The New Digital Natives: Cutting the Chord. Berlin, Heidelberg: Springer, 2015.CrossRefGoogle Scholar
  8. 8.
    WHO. World health statistics 2017 – monitoring health for the SDGs. Tech. Rep.; World Health Organization; https://apps.who.int/iris/bitstream/handle/10665/255336/9789241565486-eng.pdf?sequence=1 Accessed 28 February 2019.
  9. 9.
    Martínez-Miranda, J., Palacios-Isaac, A., López-Flores, F., Martínez, A., Aguilar, H., Jiménez, L., Ramos, R., Rosales, G., Altamirano, L., Development of a computational platform to support the screening, surveillance, prevention and detection of suicidal behaviours. Proceedings of the 9th EAI International Conference on Pervasive Computing Paradigms for Mental Health, Buenos Aires, Argentina, 2019.Google Scholar
  10. 10.
    Christensen, H., Batterham, P. J., and O'Dea, B., E-health interventions for suicide prevention. International Journal of Environmental Research and Public Health 11(8):8193–8212, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Melia, R., Francis, K., Duggan, J., Bogue, J., O'Sullivan, M., Chambers, D., Young, K., Mobile Health Technology Interventions for Suicide Prevention: Protocol for a Systematic Review and Meta-Analysis. JMIR Research Protocols; 26;7(1):e28, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lai, M. H., Maniam, T., Chan, L. F., and Ravindran, A. V., Caught in the web: a review of web-based suicide prevention. Journal of Medical Internet Research 16(1):e30, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    de la Torre, I., Castillo, G., Arambarri, J., López-Coronado, M., and Franco, M. A., Mobile Apps for Suicide Prevention: Review of Virtual Stores and Literature. JMIR Mhealth Uhealth; 10 5(10):e130, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dehn, D. M., and van Mulken, S., The impact of animated interface agents: a review of empirical research. International Journal of Human Computer Studies 52:1–22, 2000.CrossRefGoogle Scholar
  15. 15.
    Luger, E., Sellen, A., Like Having a Really Bad PA: The Gulf between User Expectation and Experience of Conversational Agents. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, New York, NY, USA, pp. 5286–5297, 2016.Google Scholar
  16. 16.
    Bickmore, T., and Gruber, A., Relational agents in clinical psychiatry. Harvard review of psychiatry 18(2):119–130, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Perry, Y., Calear, A., Mackinnon, A., Batterham, P., Licinio, J., King, C., Thomsen, N., Scott, J., Donker, T., Merry, S., Fleming, T., Stasiak, K., Werner-Seidler, A., and Christensen, H., Trial for the prevention of depression (tripod) in final-year secondary students: study protocol for a cluster randomised controlled trial. Trials 16:451, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    May, A., and Klonsky, E., Validity of suicidality items from the youth risk behavior survey in a high school sample. Assessment 18(3):379–381, 2001.CrossRefGoogle Scholar
  19. 19.
    Bresó, A., Martínez-Miranda, J., Botella, C., Baños, R., and García-Gómez, J., Usability and acceptability assessment of an empathic virtual agent to prevent major depression. Expert Systems 33(4):297–312, 2016.CrossRefGoogle Scholar
  20. 20.
    Kroenke, K., Spitzer, R., and Williams, J., The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine 16(9):606–613, 2001.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Burton, C., Szentagotai, A., McKinstry, B., Matheson, C., Matu, S., Moldovan, R., Macnab, M., Farrow, E., David, D., Pagliari, C., Serrano-Blanco, A., and Wolters, M., Pilot randomised controlled trial of help4mood, an embodied virtual agent-based system to support treatment of depression. Journal of Telemedicine and Telecare 22(6):348–355, 2016.PubMedCrossRefGoogle Scholar
  22. 22.
    Martínez-Miranda, J., Embodied conversational agents for the detection and prevention of suicidal behaviour: Current applications and open challenges. Journal of Medical Systems 41:135, 2017.PubMedCrossRefGoogle Scholar
  23. 23.
    Roberts, R., and Chen, Y., Depressive symptoms and suicidal ideation among mexican-origin and anglo adolescents. Journal of the American Academy of Child & Adolescent Psychiatry 34(1):81–90, 1995.CrossRefGoogle Scholar
  24. 24.
    Ring, L., Utami, D., and Bickmore, T., The Right Agent for the Job? In: Bickmore, T., Marsella, S., Sidner, C. (Eds), Intelligent Virtual Agents. IVA 2014. Lecture Notes in Computer Science. Vol. 8637. Cham: Springer, 2014.Google Scholar
  25. 25.
    Baylor, A. L., Kim, Y., Pedagogical agent design: the impact of agent realism, gender, ethnicity, and instructional role. In Lecture Notes in Computer Science: Intelligent Tutoring Systems; vol. 3320; pp. 592–603 Berlin/Heidelberg, Germany: Springer, 2004.CrossRefGoogle Scholar
  26. 26.
    Pratt, J. A., Hauser, K., Ugray, Z., and Patterson, O., Looking at human–computer interface design: effects of ethnicity in computer agents. Interacting with Computers 19:512–523, 2007.CrossRefGoogle Scholar
  27. 27.
    Plant, E. A., Doerr, C., Rosenberg-Kima, R., and Baylor, A., The influence of computer-based model’s race and gender on female students’ attitudes and beliefs towards engineering. Journal of Engineering Education 99(1):35–44, 2010.CrossRefGoogle Scholar
  28. 28.
    Bickmore, T., Trinh, H., Asadi, R., Olafsson, S., Safety first: Conversational agents for health care. In: Moore R, Szymanski M, Arar R, Ren G, editors. Studies in Conversational UX Design. Springer International Publishing; pp. 33–57, 2018.Google Scholar
  29. 29.
    Bohart, A., Elliott, R., Greenberg, L., Watson, J., Empathy. In: Norcross J, editor. Psychotherapy Relationships that Work: Evidence-Based Responsiveness; Chap. 6. Oxford University Press; pp. 89–108, 2011.Google Scholar
  30. 30.
    Scherer, K., Schorr, A., Johnstone, T., Appraisal Processes in Emotion: Theory, Methods, Research. Oxford University Press, 2001.Google Scholar
  31. 31.
    Ortony, A., Clore, G., Collins, A., The Cognitive Structure of Emotions. Cambridge University Press, 1998.Google Scholar
  32. 32.
    Gebhard, P., Alma: A layered model of affect. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS’05; ACM; pp. 29–36, 2005.Google Scholar
  33. 33.
    Dias, J., and Paiva, A., Feeling and reasoning: A computational model for emotional characters. In: Bento, C., Cardoso, A., Dias, G. (Eds), Progress in Artificial Intelligence. Berlin Heidelberg: Springer, 2005, 127–140.CrossRefGoogle Scholar
  34. 34.
    Clark, A., Empathy in Counseling and Psychotherapy: Perspectives and Practices. Lawrence Erlbaum Associates, 2007.Google Scholar
  35. 35.
    Martínez-Miranda J, Bresó A, García-Gómez J. Modelling two emotion regulation strategies as key features of therapeutic empathy. In: Bosse T, Broekens J, Dias J, van der Zwaan J, editors. Emotion Modeling: Towards Pragmatic Computational Models of Affective Processes. Springer International; pp. 115–133.Google Scholar
  36. 36.
    Bresó, A., Martínez-Miranda, J., Fuster-García, E., and García-Gómez, J., A novel approach to improve the planning of adaptive and interactive sessions for the treatment of major depression. International Journal of Human- Computer Studies 87:80–91.CrossRefGoogle Scholar
  37. 37.
    Mewton, L., and Andrews, G., Cognitive behavioral therapy for suicidal behaviors: improving patient outcomes. Psychology Research and Behavior Management 9:21–29, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tarrier, N., Taylor, K., and Gooding, P., Cognitive-behavioral interventions to reduce suicide behavior: A systematic review and meta-analysis. Behavior Modification 32(1):77–108, 2008.PubMedCrossRefGoogle Scholar
  39. 39.
    Stanley, B., Brown, G., Brent, D., Wells, K., Poling, K., Curry, J., Kennard, B., Wagner, A., Cwik, M., Klomek, A., Goldstein, T., Vitiello, B., Barnett, S., Daniel, S., and Hughes, J., Cognitive- behavioral therapy for suicide prevention (CBT-SP): Treatment model, feasibility, and acceptability. Journal of the American Academy of Child & Adolescent Psychiatry 48(10):1005–1013, 2009.CrossRefGoogle Scholar
  40. 40.
    Sarracino, D., Dimaggio, G., Ibrahim, R., Popolo, R., Sassaroli, S., and Ruggiero, G., When REBT Goes Difficult: Applying ABC-DEF to Personality Disorders. Journal of Rational-Emotive and Cognitive-Behavior Therapy 35(3):278–295, 2017.CrossRefGoogle Scholar
  41. 41.
    Bernstein, D. A., Borkovec, T. D., Hazlett-Stevens, H., New directions in progressive relaxation training: A guidebook for helping professionals. Greenwood Publishing Group, 2000.Google Scholar
  42. 42.
    Patterson, W. M., Dohn, H. H., Bird, J., and Patterson, G. A., Evaluation of suicidal patients: The SAD PERSONS scale. Psychosomatics 24(4):343–349, 1983.PubMedCrossRefGoogle Scholar
  43. 43.
    Rosales-Pérez, J. C., Córdova-Osnaya, M., and Cortés-Granados, R., Reliability and validity of Roberts’ suicidal scale. Journal of Behavior, Health & Social Issues 7(2):31–41, 2016.CrossRefGoogle Scholar
  44. 44.
    Avradinis, N., Panayiotopoulos, T., and Anastassakis, G., Behavior believability in virtual worlds: agents acting when they need to. SpringerPlus 2(1):246, 2013.  https://doi.org/10.1186/2193-1801-2-246.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hamilton, M., A rating scale for depression. Journal of Neurology, Neurosurgery & Psychiatry 23(1):56–62, 1960.  https://doi.org/10.1016/0022-3956(88)90024-6.CrossRefGoogle Scholar
  46. 46.
    Ramos-Brieva, J., and Cordero-Villafafila, A., A new validation of the Hamilton rating scale for depression. Journal of Psychiatric Research 22(1):21–28, 1988.  https://doi.org/10.1016/0022-3956(88)90024-6.PubMedCrossRefGoogle Scholar
  47. 47.
    Rubio, G., Montero, I., Jáuregui, J., Villanueva, R., Casado, M., Marín, J., and Santo-Domingo, J., Validación de la escala de riesgo suicida de Plutchik en población española. Archivos de Neurobiología 61(2):143–152, 1998.Google Scholar
  48. 48.
    Plutchick, R., van Praga, H. M., Conte, H. R., and Picard, S., Correlates of suicide and violence risk: The suicide risk measure. Comprehensive Psychiatry 30(4):296–302, 1989.CrossRefGoogle Scholar
  49. 49.
    Hamilton, M., The assessment of anxiety states by rating. The British journal of medical psychology 32(1):50–55, 1959.PubMedCrossRefGoogle Scholar
  50. 50.
    Lobo, A., Chamorro, L., Luque, A., Dal-Ré, R., Badia, X., and Baró, E., Validación de las versiones en español de la Montgomery-Asberg depression rating scale y la Hamilton anxiety rating scale para la evaluación de la depresión y de la ansiedad. Medicina Clínica 118:493–499.PubMedCrossRefGoogle Scholar
  51. 51.
    Terada, K., Jing, L., Yamada, S., Effects of Agent Appearance on Customer Buying Motivations on Online Shopping Sites. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA '15). ACM, New York, NY, USA, 929–934, 2015.Google Scholar
  52. 52.
    Baylor, A., Promoting motivation with virtual agents and avatars: role of visual presence and appearance, 364, Philosophical Transactions of the Royal Society B, 2009.Google Scholar
  53. 53.
    Scherer, K. R., Emotion and emotional competence: conceptual and theoretical issues for modelling agents. In: Scherer K R, Bänziger T, Roesch E B, editors. Blueprint for Affective Computing: A Sourcebook; Chap. 1.1. Oxford University Press; pp. 3–20, 2010.Google Scholar
  54. 54.
    Gaggioli, A., Mantovani, F., Castelnuovo, G., Wiederhold, B., and Riva, G., Avatars in clinical psychology: A framework for the clinical use of virtual humans. Cyberpsychology & behavior 6(2):117–165.Google Scholar
  55. 55.
    Horvath, A. O., and Luborsky, L., The role of the therapeutic alliance in psychotherapy. Journal of Consulting and Clinical Psychology 61(4):561–573, 1993.PubMedCrossRefGoogle Scholar
  56. 56.
    Bickmore, T., Gruber, A., and Picard, R., Establishing the computer–patient working alliance in automated health behavior change interventions. Patient Education and Counseling 59:21–30, 2005.PubMedCrossRefGoogle Scholar
  57. 57.
    Gong, L., and Nass, C., When a talking-face computer agent is half-human and half-humanoid: Human identity and consistency preference. Human Communication Research 33:163–193, 2007.Google Scholar
  58. 58.
    Gris, I., Novick, D., Camacho, A., Rivera, D. A., Gutierrez, M., Rayon, A., Recorded speech, virtual environments, and the effectiveness of embodied conversational agents. In: Bickmore T, Marsella S, Sidner C, editors. Intelligent Virtual Agents. Springer International Publishing; pp. 182–185, 2014.Google Scholar
  59. 59.
    Burkhardt, F., Campbell, N., Emotional speech synthesis. In: Calvo R, D’Mello S, Gratch J, Kappas A, editors. The Oxford Handbook of Affective Computing; Chap. 20. Oxford University Press; pp. 286–295, 2015.Google Scholar
  60. 60.
    Tielman, M., Neerincx, M., van Meggelen, M., Franken, I., and Brinkman, W., How should a virtual agent present psychoeducation? Technology and Health Care 25(6):1081–1096, 2018.PubMedCentralCrossRefGoogle Scholar
  61. 61.
    Payne, J., Szymkowiak, A., Robertson, P., and Johnson, G., Gendering the machine: Preferred virtual assistant gender and realism in self-service. In: Aylett, R., Krenn, B., Pelachaud, C., Shimodaira, H. (Eds), Intelligent Virtual Agents. Berlin Heidelberg: Springer, 2013, 106–115.CrossRefGoogle Scholar
  62. 62.
    Cowell, A. J., and Stanney, K. M., Manipulation of non-verbal interaction style and demographic embodiment to increase anthropomorphic computer character credibility. International Journal of Human-Computer Studies 62(2):281–306, 2005.CrossRefGoogle Scholar
  63. 63.
    Qiu, L., and Benbasat, I., A study of demographic embodiments of product recommendation agents in electronic commerce. International Journal of Human-Computer Studies 68(10):669–688, 2010.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CONACYT – Centro de Investigación Científica y de Educación Superior de EnsenadaUnidad de Transferencia TecnológicaTepicMexico
  2. 2.Servicios de Salud de NayaritTepicMexico
  3. 3.Centro de Investigación Científica y de Educación Superior de EnsenadaUnidad de Transferencia TecnológicaTepicMexico
  4. 4.Universidad VizcayaTepicMexico

Personalised recommendations