Blood Glucose Regulation for Post-Operative Patients with Diabetics and Hypertension Continuum: A Cascade Control-Based Approach

  • A. Alavudeen BashaEmail author
  • S. Vivekanandan
  • P. Parthasarathy
Patient Facing Systems
Part of the following topical collections:
  1. Wearable Computing Techniques for Smart Health


Management of glycemic level in post-operative condition is critical for hypertensive patients and the post-operative stress may results in hyperglycemia, hyper insulin and osmotic diuresis. Recent medical research shows that diabetic and hypertension hands together in a significant overlap in its etiology and its disease mechanism. It is clear that there is a call for monitoring in the parameter and controlling the glucose level particularly in the presence of hypertension. This paper proposes the novel complex (cascade) control system to control the insulin infusion level particularly in the presence of hypertension. Based on the requirements the structure has been designed and the simulation results indicates that the proposed control strategy shows better results and may achieve potentially better glycemic control to the hypersensitive diabetic patients.


Optimal insulin infusion Cascade control Hypertension Mathematical model 



  1. 1.
    Wild, S., Roglic, G., Green, A., Sicree, R., and King, H., Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1,047–1,053, 2004.CrossRefGoogle Scholar
  2. 2.
    Kumar, P. M., Lokesh, S., Varatharajan, R., Babu, G. C., and Parthasarathy, P., Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Futur. Gener. Comput. Syst. 86:527–534, 2018.CrossRefGoogle Scholar
  3. 3.
    Kumar, P. M., Devi, U., Manogaran, G., Sundarasekar, R., Chilamkurti, N., and Varatharajan, R., Ant colony optimization algorithm with Internet of Vehicles for intelligent traffic control system. Comput. Netw. 144:154–162, 2018.CrossRefGoogle Scholar
  4. 4.
    Basha, A., and Vivekanandan, S., Evolution of diabetic control identification in lieu of continuous glucose monitoring technology- A Review. Int. J. Appl. Eng. Res. 12(16):6102–6107, 2017.Google Scholar
  5. 5.
    Gurushankar, G., Sowers, J. R., et al., Hypertension and diabetes mellitus. Reference Section: European Cardiovascular Disease. pp. 01–07, 2006.Google Scholar
  6. 6.
    Mugo MN, Stump CS, Rao PG, et al., Hypertension and diabetes mellitus. In: Black HR, Elliott WJ (eds). Hypertension: A Companion to Braunwald's Heart Disease. Elsevier, p. 409, 2007.Google Scholar
  7. 7.
    Mathan, K., Kumar, P. M., Panchatcharam, P., Manogaran, G., & Varadharajan, R., A novel Gini index decision tree data mining method with neural network classifiers for prediction of heart disease. Design Automation for Embedded Systems. 1–18, 2018.Google Scholar
  8. 8.
    Priya, S., Varatharajan, R., Manogaran, G., Sundarasekar, R., and Kumar, P. M., Paillier homomorphic cryptosystem with poker shuffling transformation based water marking method for the secured transmission of digital medical images. Personal and Ubiquitous Computing. 1–11, 2018.Google Scholar
  9. 9.
    Varatharajan, R., Preethi, A. P., Manogaran, G., Kumar, P. M., and Sundarasekar, R., Stealthy attack detection in multi-channel multi-radio wireless networks. Multimedia Tools and Applications. 1–24, 2018.Google Scholar
  10. 10.
    Landsberg, L., MolitchM. Diabetes and hypertension: Pathogenesis,prevention and treatment. Clin. Exp. Hypertens. 26:621–628, 2004.CrossRefGoogle Scholar
  11. 11.
    Sober, S., Org, E., Kepp, K. et al., Targeting 160 candidate genes for blood pressure regulation with a genome-wide genotyping array. PLoS One 4:e6034, 2009.CrossRefGoogle Scholar
  12. 12.
    Sowers, J. R., Epstein, M., and Frohlich, E., D, “Diabetes, hypertension, and cardiovascular disease: An update”. Hypertension 37(4):1,053–1,059, 2001.CrossRefGoogle Scholar
  13. 13.
    Dagogo-Jack, S., Management of Diabetes Mellitus in Surgical Patients. Diabetes Spectrum 15(1):44–48, 2002.CrossRefGoogle Scholar
  14. 14.
    American Diabetes Association, Standards of medical care for patients with diabetes mellitus (Position Statement). Diabetes Care 24(Suppl. 1):S33–S43, 2001.Google Scholar
  15. 15.
    Parthasarathy, P., and Vivekanandan, S., A comprehensive review on thin film-based nano-biosensor for uric acid determination: Arthritis diagnosis. World Review of Science, Technology and Sustainable Development 14(1):52–71, 2018.CrossRefGoogle Scholar
  16. 16.
    Parthasarathy, P., and Vivekanandan, S., Urate crystal deposition, prevention and various diagnosis techniques of GOUT arthritis disease: A comprehensive review. Health Information Science and Systems 6(1):19, 2018.CrossRefGoogle Scholar
  17. 17.
    Ganesh, J., and Viswanathan, V., Management of diabetic hypertensives. Indian Journal of Endocrinology and Metabolism. 15(Supplement 4):374–379, 2011.Google Scholar
  18. 18.
    American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 34:S5–S10, 2011.Google Scholar
  19. 19.
    Parthasarathy, P., and Vivekanandan, S., Investigation on uric acid biosensor model for enzyme layer thickness for the application of arthritis disease diagnosis. Health Information Science and Systems 6(1):–6, 2018.Google Scholar
  20. 20.
    Parthasarathy, P., and Vivekanandan, S., A typical IoT architecture-based regular monitoring of arthritis disease using time wrapping algorithm. International Journal of Computers and Applications. 1–11, 2018.Google Scholar
  21. 21.
    Breithaupt, T., Postoperative glycemic control in cardiac surgery patients. Harmacology Notes. pp. 79–82, 2010.Google Scholar
  22. 22.
    Libman, I. M., and Becker, D. J., Coexistence of type 1 and type 2 diabetes mellitus: "Double" diabetes? Pediatr. Diabetes 4:110–113, 2003.CrossRefGoogle Scholar
  23. 23.
    Vivekanandan, S., and Devanand, M., Remote monitoring for diabetes disorder: Pilot study using InDiaTel prototype. European Research in Telemedicine/La Recherche Européenne en Télémédecine 4:63–69, 2015.CrossRefGoogle Scholar
  24. 24.
    Bergman, R. N., and Urquhart, J., The pilot gland approach to the study of insulin secretory dynamics. Recent Prog. Horm. Res. 27:583–605, 1971 passim.PubMedGoogle Scholar
  25. 25.
    Kovács, L., Szalay, P., Benyó, B., and Chase, G., Applicability results of a nonlinear model-based robust blood glucose control algorithm. J. Diabetes Sci. Technol. 7:708–716.Google Scholar
  26. 26.
    Varadharajan, R., Priyan, M. K., Panchatcharam, P., Vivekanandan, S., and Gunasekaran, M., A new approach for prediction of lung carcinoma using back propagation neural network with decision tree classifiers. Journal of Ambient Intelligence and Humanized Computing. 1–12, 2018.Google Scholar
  27. 27.
    Basha, A. A., Vivekanandan, S., and Parthasarathy, P., Evolution of blood pressure control identification in lieu of post-surgery diabetic patients: A review. Health Information Science and Systems 6(1):17, 2018.CrossRefGoogle Scholar
  28. 28.
    Magni, L., Raimondo, D. M., Bossi, L., Man, C. D., De Nicolao, G. et al., Model predictive control of type 1 diabetes: An in silico trial. J. Diabetes Sci. Technol. 1:804–812, 2007.CrossRefGoogle Scholar
  29. 29.
    Sherr, J., and Tamborlane, W., Past, present, and future if insulin pump therapy: A better shot at diabetes control. Mt Sinai J. Med. 75:352–361, 2008.CrossRefGoogle Scholar
  30. 30.
    Al-Tabakha, M. M., and Arida, A. I., Recent challenges in insulin delivery systems: A review. Indian J. Pharm. Sci. 70:278–286, 2008.CrossRefGoogle Scholar
  31. 31.
    Slate J. B., Sheppard L. C., Rideout V. C., et al., Closed-loop ni-troprusside infusion: Modeling and control theory for clinical application. Proceedings of IEEE International Symposium on Circuits Systems, pp. 482–488, 1980.Google Scholar
  32. 32.
    Slate, J. B., Sheppard, L. C., Rideout, V. C., and Blackstone, E. H., A model for design of a blood pressure controller for hypertensive patients. In: Proc IEEE EMBS Conf. pp. 867–72, 1979.Google Scholar
  33. 33.
    Basha, A., Vivekanandan, S., Optimal control identification of IMC and PID controllers for insulin infusion. IEEE Conference Transactions. 2017.Google Scholar
  34. 34.
    Garcia, C. E., and Morari, M. A., Internal model control. Unifying review and Some New Results. Industrial and Engineering Chemistry and Process Design Development 21(2):308–323, 1982.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Alavudeen Basha
    • 1
    Email author
  • S. Vivekanandan
    • 1
  • P. Parthasarathy
    • 1
  1. 1.School of Electrical EngineeringVellore Institute of TechnologyVelloreIndia

Personalised recommendations