Advertisement

Psychophysiological Stress Response of a Paralympic Athlete During an Ultra-Endurance Event. A Case Study

  • Pedro Belinchón-deMiguel
  • Pablo Ruisoto-Palomera
  • Vicente Javier Clemente-SuárezEmail author
Education & Training
  • 10 Downloads
Part of the following topical collections:
  1. Technological Innovations in Biomedical Training and Practice (TEEM 2018)

Abstract

Psychophysiological response of athletes with spinal cord injurie has not been reported yet in scientific literature. The aim of this study is to examine the psychophysiological stress response of Paralympic athlete during competitive activities. We collected the following psychophysiological measurements: anxiety-trait, anxiety-state, locus of control, perceived psychological stress, stress-copying style, rate of perceived exertion, perceived muscle pain, body temperature, forced vital capacity, blood oxygen saturation, blood glucose and lactate concentrations, isometric hand strength, cortical arousal, heart rate variability, heart rate and velocities of a female Paralympic spinal cord injured athlete in a 11 h and 44 min ultraendurance mountain event. An ultraendurance mountain even produced an increase in the sympathetic autonomous modulation, heart rate, lactate, muscular pain and rated of perceived exertion and a decrease in cortical arousal, hand strength and respiratory muscle in a spinal cord injurie female athlete during. The Paralympic athletes presented a low psychological inflexibility, high life engagement, strong internal locus of control, a low trait and state anxiety and medium perceived psychological stress. These results are consistent with the expected response during a highly stressful situation and consistent with previous findings in athletes without spinal cord injurie.

Keywords

Psychophysiological stress response Rate of perceived exertion Locus of control Cortical arousal Spinal cord injury Heart rate variability 

Notes

Funding

This study was partially founded by the project 2016/UEM26.

Compliance with ethical standards

Conflict of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Hicks, A., Martin, K., Ditor, D., Latimer, A., Craven, C., Bugaresti, J. et al., Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord 41(1):34, 2003.CrossRefGoogle Scholar
  2. 2.
    Jacobs, P. L., Nash, M. S., and Rusinowski, J. W., Circuit training provides cardiorespiratory and strength benefits in persons with paraplegia. Med. Sci. Sports Exerc. 33(5):711–717, 2001.CrossRefGoogle Scholar
  3. 3.
    Ditor, D., Latimer, A., Ginis, K. M., Arbour, K., McCartney, N., and Hicks, A., Maintenance of exercise participation in individuals with spinal cord injury: effects on quality of life, stress and pain. Spinal Cord 41(8):446, 2003.CrossRefGoogle Scholar
  4. 4.
    Brizuela, G., Polo, M., Martos, J., Sanchis, E., Influencia del diámetro del aro de propulsión sobre la frecuencia cardiaca y la lactacidemia en un atleta en silla de ruedas de elite mundial. Motricidad. Eur. J. Hum. Mov. 16, 2006.Google Scholar
  5. 5.
    Turbanski, S., and Schmidtbleicher, D., Effects of heavy resistance training on strength and power in upper extremities in wheelchair athletes. J. Strength Cond. Res. 24(1):8–16, 2010.CrossRefGoogle Scholar
  6. 6.
    Tordi, N., Dugue, B., Klupzinski, D., Rasseneur, L., Rouillon, J., and Lonsdorfer, J., Interval training program on a wheelchair ergometer for paraplegic subjects. Spinal Cord 39(10):532, 2001.CrossRefGoogle Scholar
  7. 7.
    Keyser, R. E., Rasch, E. K., Finley, M., and Rodgers, M. M., Improved upper-body endurance following a 12-week home exercise program for manual wheelchair users. J. Rehabil. Res. Dev. 40(6):501, 2003.CrossRefGoogle Scholar
  8. 8.
    Lakomy, H. K., Campbell, I., and Williams, C., Treadmill performance and selected physiological characteristics of wheelchair athletes. Br. J. Sports Med. 21(3):130–133, 1987.CrossRefGoogle Scholar
  9. 9.
    Vinet, A., Le Gallais, D., Bouges, S., Bernard, P., Poulain, M., Varray, A. et al., Prediction of VO2peak in wheelchair-dependent athletes from the adapted Leger and Boucher test. Spinal Cord 40(10):507, 2002.CrossRefGoogle Scholar
  10. 10.
    Suarez, V. J. C., Arroyo, Victor Eugenio Munoz Fernandez, Campo DR, Valdivielso FN, Rave JMG, Santos-Garcia DJ. Analysis of selected physiological performance determinants and muscle damage in a 24-hour ultra-endurance relay race: Brief clinical report. Int. SportMed. J. 12(4):179–186, 2011.Google Scholar
  11. 11.
    Suarez, V. C., Valdivielso, F. N., and Rave, J. M. G., Changes in biochemical parameters after a 20-hour ultra-endurance kayak and cycling event. Int. SportMed. J. 12(1):1–6, 2011.Google Scholar
  12. 12.
    Page, A. J., Reid, S. A., Speedy, D. B., Mulligan, G. P., and Thompson, J., Exercise-associated hyponatremia, renal function, and nonsteroidal antiinflammatory drug use in an ultraendurance mountain run. Clin. J. Sport Med. 17(1):43–48, 2007.CrossRefGoogle Scholar
  13. 13.
    Belinchon-deMiguel, P., and Clemente-Suárez, V. J., Psychophysiological, Body Composition, Biomechanical and Autonomic Modulation Analysis Procedures in an Ultraendurance Mountain Race. J. Med. Syst. 42(2):32, 2018.CrossRefGoogle Scholar
  14. 14.
    Clemente-Suárez, V. J., Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event. Appl. Physiol. Nutr. Metab. 40(3):269–273, 2014.CrossRefGoogle Scholar
  15. 15.
    Neumayr, G., Ganzer, H., Sturm, W., Pfister, R., Mitterbauer, G., and Hortnagl, H., Physiological effects of an ultra-cycle ride in an amateur athlete - a case report. J. Sports Sci. Med. 1(1):20–26, 2002.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Laursen, P. B., Rhodes, E. C., and Langill, R. H., The effects of 3000-m swimming on subsequent 3-h cycling performance: implications for ultraendurance triathletes. Eur. J. Appl. Physiol. 83(1):28–33, 2000.CrossRefGoogle Scholar
  17. 17.
    Schumacher, Y. O., Jankovits, R., Bültermann, D., Schmid, A., and Berg, A., Hematological indices in elite cyclists. Scand. J. Med. Sci. Sports 12(5):301–308, 2002.CrossRefGoogle Scholar
  18. 18.
    Fallon, K. E., Sivyer, G., Sivyer, K., and Dare, A., The biochemistry of runners in a 1600 km ultramarathon. Br. J. Sports Med. 33(4):264–269, 1999.CrossRefGoogle Scholar
  19. 19.
    Warburton, D. E., Welsh, R. C., Haykowsky, M. J., Taylor, D. A., and Humen, D. P., Biochemical changes as a result of prolonged strenuous exercise. Br. J. Sports Med. 36(4):301–303, 2002.CrossRefGoogle Scholar
  20. 20.
    Clemente-Suárez, V., Mielgo-Ayuso, J., Quiles, J., Varela-Lopez, A., and Aranda, P., Effect of α-tocopherol megadoses on hematologic parameters and antioxidant capacity of rats in an ultraendurance probe. Physiol. Int. 104(4):291–300, 2017.CrossRefGoogle Scholar
  21. 21.
    Belinchon-Demiguel, P., and Clemente-Suarez, V. J., Nutrition, hydration and ergogenic aids strategies in ultraendurance mountain events. J Sports Med Phys Fitness, 2018.  https://doi.org/10.23736/S0022-4707.18.08920-X.
  22. 22.
    Neumayr, G., Pfister, R., Mitterbauer, G., Gaenzer, H., Sturm, W., and Hoertnagl, H., Heart rate response to ultraendurance cycling. Br. J. Sports Med. 37(1):89–90, 2003 Feb.CrossRefGoogle Scholar
  23. 23.
    Gratze, G., Rudnicki, R., Urban, W., Mayer, H., Schlogl, A., and Skrabal, F., Hemodynamic and autonomic changes induced by Ironman: prediction of competition time by blood pressure variability. J. Appl. Physiol. (1985) 99(5):1728–1735, 2005.CrossRefGoogle Scholar
  24. 24.
    Jeukendrup, A. E., Moseley, L., Mainwaring, G. I., Samuels, S., Perry, S., and Mann, C. H., Exogenous carbohydrate oxidation during ultraendurance exercise. J. Appl. Physiol. 100(4):1134–1141, 2006.CrossRefGoogle Scholar
  25. 25.
    Marteau, T. M., and Bekker, H., The development of a six-item short-form of the state scale of the Spielberger State—Trait Anxiety Inventory (STAI). Br. J. Clin. Psychol. 31(3):301–306, 1992.CrossRefGoogle Scholar
  26. 26.
    Rotter, J. B., Internal versus external control of reinforcement: A case history of a variable. Am. Psychol. 45(4):489, 1990.CrossRefGoogle Scholar
  27. 27.
    Remor, E., Psychometric properties of a European Spanish version of the Perceived Stress Scale (PSS). Span. J. Psychol. 9(1):86–93, 2006.CrossRefGoogle Scholar
  28. 28.
    Simon, E., and Verboon, P., Psychological inflexibility and child anxiety. J. Child Fam. Stud. 25(12):3565–3573, 2016.CrossRefGoogle Scholar
  29. 29.
    Scheier, M. F., Wrosch, C., Baum, A., Cohen, S., Martire, L. M., Matthews, K. A. et al., The life engagement test: Assessing purpose in life. J. Behav. Med. 29(3):291, 2006.CrossRefGoogle Scholar
  30. 30.
    Freund, W., Weber, F., Billich, C., Birklein, F., Breimhorst, M., and Schuetz, U. H., Ultra-Marathon Runners Are Different: Investigations into Pain Tolerance and Personality Traits of Participants of the TransEurope FootRace 2009. Pain Pract. 13(7):524–532, 2013.CrossRefGoogle Scholar
  31. 31.
    Schütz, U. H., Schmidt-Trucksäss, A., Knechtle, B., Machann, J., Wiedelbach, H., Ehrhardt, M. et al., The Transeurope Footrace Project: longitudinal data acquisition in a cluster randomized mobile MRI observational cohort study on 44 endurance runners at a 64-stage 4,486 km transcontinental ultramarathon. BMC Med. 10(1):78, 2012.CrossRefGoogle Scholar
  32. 32.
    Steyn, B. J., Strategies used by South African non-elite athletes to cope with the environmental stressors associated with endurance events. S. Afr. J. Res. Sport Phys. Educ. Recreation 29(2):99–107, 2007.Google Scholar
  33. 33.
    Baker, J., Côté, J., and Deakin, J., Cognitive characteristics of expert, middle of the pack, and back of the pack ultra-endurance triathletes. Psychol. Sport Exerc. 6(5):551–558, 2005.CrossRefGoogle Scholar
  34. 34.
    McCarthy, P., Barker, J., Jones, M., and Moran, A. P., Single-case research methods in sport and exercise psychology. London: Routledge, 2011.Google Scholar
  35. 35.
    Keegan, R. J., Schinke, R., Chirban, S., Durand-Bush, N., and Cotterill, S., Guidelines for writing applied case studies in sport and exercise psychology. Rev. Psicol. Deporte. 26(3):85–90, 2017.Google Scholar
  36. 36.
    Kinugasa, T., The application of single-case research designs to study elite athletes’ conditioning: An update. J. Appl. Sport Psychol. 25(1):157–166, 2013.CrossRefGoogle Scholar
  37. 37.
    Clemente-Suarez, V. J., and Robles-Pérez, J. J., Acute effects of caffeine supplementation on cortical arousal, anxiety, physiological response and marksmanship in close quarter combat. Ergonomics 58(11):1842–1850, 2015.CrossRefGoogle Scholar
  38. 38.
    Clemente-Suárez, V. J., and Arroyo-Toledo, J., Use of biotechnology devices to analyze fatigue process in swimming training. J. Med. Syst. 41(6):94, 2017.CrossRefGoogle Scholar
  39. 39.
    Saito, S., Does fatigue exist in a quantitative measurement of eye movements? Ergonomics 35(5–6):607–615, 1992.CrossRefGoogle Scholar
  40. 40.
    Clemente-Suárez, V. J., de la Vega, R., Robles-Pérez, J. J., Lautenschlaeger, M., and Fernández-Lucas, J., Experience modulates the psychophysiological response of airborne warfighters during a tactical combat parachute jump. Int. J. Psychophysiol. 110:212–216, 2016.CrossRefGoogle Scholar
  41. 41.
    Clemente-Suarez, V. J., and Robles-Perez, J. J., Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat. J. Strength Cond. Res. 27(9):2420–2426, 2013.CrossRefGoogle Scholar
  42. 42.
    Beltrán-Velasco, A. I., Bellido-Esteban, A., Ruisoto-Palomera, P., and Clemente-Suárez, V. J., Use of Portable Digital Devices to Analyze Autonomic Stress Response in Psychology Objective Structured Clinical Examination. J. Med. Syst. 42(2):35, 2018.CrossRefGoogle Scholar
  43. 43.
    Clemente-Suárez, V. J., Robles-Pérez, J. J., and Fernández-Lucas, J., Psycho-physiological response in an automatic parachute jump. J. Sports Sci. 35(19):1872–1878, 2017.CrossRefGoogle Scholar
  44. 44.
    Fox, S. I., Agud Aparicio, L. J., Fisiología humana, 2003.Google Scholar
  45. 45.
    Lippi, G., Brocco, G., Franchini, M., Schena, F., and Guidi, G., Comparison of serum creatinine, uric acid, albumin and glucose in male professional endurance athletes compared with healthy controls. Clin. Chem. Lab. Med. 42(6):644–647, 2004.CrossRefGoogle Scholar
  46. 46.
    Langberg, H., Bjørn, C., Boushel, R., Hellsten, Y., and Kjaer, M., Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans. J. Physiol. 542(3):977–983, 2002.CrossRefGoogle Scholar
  47. 47.
    Clemente-Suárez, V. J., The application of cortical arousal assessment to control neuromuscular fatigue during strength training. J. Mot. Behav. 49(4):429–434, 2017.CrossRefGoogle Scholar
  48. 48.
    Clemente-Suárez, V. J., Cortical arousal and central nervous system fatigue after a mountain marathon. (Activación cortical y fatiga del sistema nervioso después de una maratón de montaña). CCD. 12(35):143–148, 2017.  https://doi.org/10.12800/ccd.v12i35.886.CrossRefGoogle Scholar
  49. 49.
    Vallverdú, M., Ruiz-Muñoz, A., Roca, E., Caminal, P., Rodríguez, F. A., Irurtia, A., and Perera, A., Assessment of Heart Rate Variability during an Endurance Mountain Trail Race by Multi-Scale Entropy Analysis. Entropy 19(12):658, 2017.CrossRefGoogle Scholar
  50. 50.
    Clemente-Suárez, V. J., and Arroyo-Toledo, J. J., The Use of Autonomic Modulation Device to Control Training Performance after High-Intensity Interval Training Program. J. Med. Syst. 42(3):47, 2018.CrossRefGoogle Scholar
  51. 51.
    Hormeño-Holgado, A. J., Perez-Martinez, M. A., and Clemente-Suárez, V. J., Psychophysiological response of air mobile protection teams in an air accident manoeuvre. Physiol. Behav. 199:79–83, 2019.CrossRefGoogle Scholar
  52. 52.
    Clemente-Suarez, V. J., Periodized training archive better autonomic modulation and aerobic performance than non periodized training. J. Sports Med. Phys. Fitness 58(11):1559–1564, 2018.  https://doi.org/10.23736/S0022-4707.17.07582-X.CrossRefPubMedGoogle Scholar
  53. 53.
    Clemente-Suárez, V. J., Dalamitros, A., Ribeiro, J., Sousa, A., Fernandes, R. J., and Vilas-Boas, J. P., The effects of two different swimming training periodization on physiological parameters at various exercise intensities. Eur. J. Sport Sci. 17(4):425–432, 2017.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Enfermería, Facultad de Ciencias Biomédicas y de la SaludUniversidad Europea de MadridMadridSpain
  2. 2.Department of Basic Psychology, Psychobiology and Methodology of Human BehaviorUniversity of SalamancaSalamancaSpain
  3. 3.Faculty of Sports SciencesUniversidad Europea de MadridMadridSpain
  4. 4.Grupo de Investigación en Cultura, Educación y SociedadUniversidad de la CostaBarranquillaColombia
  5. 5.Faculty of Sport Sciences, Department of Sport ScienceMadridSpain

Personalised recommendations