Advertisement

Journal of Medical Systems

, 42:236 | Cite as

Inter and Intra-Rater Reliability of Short-Term Measurement of Heart Rate Variability on Rest in Diabetic Type 2 Patients

  • Daniela BassiEmail author
  • Aldair Darlan Santos-de-Araújo
  • Patrícia Faria Camargo
  • Almir Vieira Dibai-Filho
  • Moyrane Abreu da Fonseca
  • Renata Gonçalves Mendes
  • Audrey Borghi-Silva
Systems-Level Quality Improvement
  • 90 Downloads
Part of the following topical collections:
  1. Systems-Level Quality Improvement

Abstract

Heart rate variability (HRV) among other methods can be used to assess diabetic cardiac autonomic neuropathy by cardiac intervals were recorded. However, the amount of error depending on this measurement methodology is unclear. To evaluate the intra- and inter-rater reliability to calculate HRV indices, comparing different times and by different trained examiners in patients with type 2 diabetes mellitus (T2DM). Thirty individuals of both genders, aged between 18 and 45 years, with T2DM. The RR interval (RRi) were recorded during a 10 min period on supine position using a portable heart rate monitor (Polar® S810i model). HRV indices were calculated by the software Kubios® HRV analysis (version 2.2). Linear (Mean RRi; STD RR; Mean HR; rMSSD; RR Tri; TINN LF; HF; total power) and non-linear (SD1; SD2; DFα1; DFα2, ApEn and, SampEn) indices were calculated by two examiners with an interval of one week between them. Substantial to excellent was found for reliability of the intra-examiner, with intraclass correlation coefficient (ICC) values ranging from 0.79 to 0.99, standard error of measurement (SEM) between 0.02 and 123.49 (in percentage: 1.83 and 16.67), and minimum detectable change (MDC) between 0.07 and 342.30. Regarding the inter-examiner reliability, substantial to excellent reliability was found, with ICC values ranging from 0.73 to 0.97, SEM between 0.04 and 178.13 (in percentage: 3.26 and 24.18), and MDC between 0.11 and 493.77. The use of the portable heart rate monitor to measure HRV showed acceptable intra and inter reliability in individuals with T2DM, supporting the use of this method of evaluation in research and clinical practice.

Keywords

Type 2 diabetes mellitus Heart rate variability Reproducibility of results 

Notes

Funding Sources

Supported by a National Counsel of Technological and Scientific Development (CNPq) and São Paulo Research Foundation (FAPESP, grant number 2009/01842–0).

Compliance with ethical standards

Conflicts of interest

The authors declare they have no conflicts of interest.

References

  1. 1.
    Vinik, A. I., and Ziegler, D., Diabetic Cardiovascular Autonomic Neuropathy. Circulation. 2007 [cited 2018 Jul 12];115:387–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17242296 CrossRefGoogle Scholar
  2. 2.
    Osterhues, H.-H., Großmann, G., Kochs, M., and Hombach, V., Heart-rate variability for discrimination of different types of neuropathy in patients with insulin-dependent diabetes mellitus. J Endocrinol Invest. 1998 [cited 2018 Jul 12];21:24–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9633019 CrossRefGoogle Scholar
  3. 3.
    Serhiyenko, V.A., and Serhiyenko, A.A., Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment. World J Diabetes. Baishideng Publishing Group Inc; 2018 [cited 2018 Jul 12];9:1–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29359025
  4. 4.
    Verrotti, A., Prezioso, G., Scattoni, R., and Chiarelli, F., Autonomic neuropathy in diabetes mellitus. Front Endocrinol (Lausanne). Frontiers Media SA 5:205, 2014.Google Scholar
  5. 5.
    Bassi, D., Arakelian, V.M., Mendes, R.G., Caruso, F.C.R., Bonjorno Júnior, J.C., Zangrando, K.T.L., et al. Poor glycemic control impacts linear and nonlinear dynamics of heart rate in DM type 2. Rev Bras Med do Esporte. 2015;21.CrossRefGoogle Scholar
  6. 6.
    Martinez, P. F., Okoshi, M. P., Martinez, P. F., and Okoshi, M. P., Heart Rate Variability in Coexisting Diabetes and Hypertension. Arq Bras Cardiol. Arquivos Brasileiros de Cardiologia 111:73–74, 2018.PubMedGoogle Scholar
  7. 7.
    Bassi, D., Cabiddu, R., Mendes, R.G., Tossini, N., Arakelian, V.M., Caruso, F.C.R., et al. Effects of Coexistence Hypertension and Type II Diabetes on Heart Rate Variability and Cardiorespiratory Fitness. Arq Bras Cardiol. 2018 [cited 2018 Sep 8];111:64–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30110046
  8. 8.
    Risk M, Bril V, Broadbridge C, Cohen A. Heart Rate Variability Measurement in Diabetic Neuropathy: Review of Methods. Diabetes Technol Ther. Mary Ann Liebert, Inc.; 2001;3:63–76.Google Scholar
  9. 9.
    Ferreira, M. J., Zanesco, A., Ferreira, M. J., and Zanesco, A., Heart rate variability as important approach for assessment autonomic modulation. Mot Rev Educ Física. Motriz: revista de educação física (Online) 22:3–8, 2016.CrossRefGoogle Scholar
  10. 10.
    Wallén, M. B., Hasson, D., Theorell, T., Canlon, B., and Osika, W., Possibilities and limitations of the polar RS800 in measuring heart rate variability at rest. Eur. J. Appl. Physiol. 112:1153–1165, 2012.CrossRefGoogle Scholar
  11. 11.
    da Costa de Rezende Barbosa, M. P., da Silva, N. T., de Azevedo, F. M., Pastre, C. M., and LCM, V., Comparison of Polar RS800G3™ heart rate monitor with Polar S810i™ and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin. Physiol. Funct. Imaging 36:112–117, 2016.CrossRefGoogle Scholar
  12. 12.
    Vanderlei, L. C. M., Silva, R. A., Pastre, C. M., Azevedo, F. M., and Godoy, M. F., Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz. J. Med. Biol. Res. 41:854–859, 2008.CrossRefGoogle Scholar
  13. 13.
    Giles, D., Draper, N., and Neil, W., Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur. J. Appl. Physiol. 116:563–571, 2016.CrossRefGoogle Scholar
  14. 14.
    Dibai-Filho, A. V., Guirro, E. C. O., Ferreira, V. T. K., Brandino, H. E., Vaz, M. M. O. L. L., and RRJ, G., Reliability of different methodologies of infrared image analysis of myofascial trigger points in the upper trapezius muscle. Brazilian J Phys Ther. Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia 19:122–128, 2015.CrossRefGoogle Scholar
  15. 15.
    Van Maanen, C. J., Zonnenberg, A. J., Elvers, J. W., and Oostendorp, R. A., Intra/interrater reliability of measurements on body posture photographs. Cranio. 14:326–331, 1996.CrossRefGoogle Scholar
  16. 16.
    Nussinovitch, U., Cohen, O., Kaminer, K., Ilani, J., and Nussinovitch, N., Evaluating reliability of ultra-short ECG indices of heart rate variability in diabetes mellitus patients. J Diabetes Complications. 2012 [cited 2018 Jul 8];26:450–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22682758 CrossRefGoogle Scholar
  17. 17.
    Sacre, J.W., Jellis, C.L., Marwick, T.H., and Coombes, J.S., Reliability of heart rate variability in patients with Type 2 diabetes mellitus. Diabet Med. 2012 [cited 2018 Jul 8];29:e33–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22172021 CrossRefGoogle Scholar
  18. 18.
    Kottner, J., Audigé, L., Brorson, S., Donner, A., Gajewski, B.J., Hróbjartsson, A., et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol. 2011 [cited 2018 Jul 11];64:96–106. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21130355 CrossRefGoogle Scholar
  19. 19.
    Fleiss, J. L., The Design and Analysis of Clinical Experiments. Hoboken: John Wiley & Sons, Inc., 1999.CrossRefGoogle Scholar
  20. 20.
    Bonett, D. G., Sample size requirements for estimating intraclass correlations with desired precision. Stat. Med. 21:1331–1335, 2002.CrossRefGoogle Scholar
  21. 21.
    Owen, N., Healy, G. N., Matthews, C. E., and Dunstan, D. W., Too Much Sitting: the population health science of sedentary behavior. Exerc. Sport Sci. Rev. 38:105–113, 2010.CrossRefGoogle Scholar
  22. 22.
    de Souza Pereira Rolim, L. C., de Sá, J. R., Chacra, A. R., and Dib, S. A., Neuropatia autonômica cardiovascular diabética: fatores de risco, impacto clínico e diagnóstico precoce. Arq Bras Cardiol. Arquivos Brasileiros de Cardiologia 90:e24–e32, 2008.Google Scholar
  23. 23.
    American Diabetes Association AD, Standards of medical care in diabetes--2013. Diabetes Care. American Diabetes Association 36(Suppl 1):S11–S66, 2013.Google Scholar
  24. 24.
    Sztajzel, J., Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 134:514–522, 2004.PubMedGoogle Scholar
  25. 25.
    Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996 [cited 2018 Jul 11];93:1043–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8598068 CrossRefGoogle Scholar
  26. 26.
    Miranda Dantas, E., Lima Sant’Anna, M., Varejão Andreão, R., Pereira Gonçalves, C., Aguiar Morra, E., Perim Baldo, M. et al., Spectral analysis of heart rate variability with the autoregressive method: What model order to choose? Comput. Biol. Med. 42:164–170, 2012.CrossRefGoogle Scholar
  27. 27.
    Marín-Morales, J., Higuera-Trujillo, J. L., Greco, A., Guixeres, J., Llinares, C., Scilingo, E. P. et al., Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors. Sci. Rep. Nature Publishing Group 8:13657, 2018.CrossRefGoogle Scholar
  28. 28.
    Piskorski, J., and Guzik, P., Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy adults. Physiol Meas. 2007 [cited 2018 Jul 11];28:287–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17322593 CrossRefGoogle Scholar
  29. 29.
    Pincus, S.M., Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991 [cited 2018 Jul 11];88:2297–301. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11607165
  30. 30.
    Stein, P.K., and Reddy, A., Non-Linear Heart Rate Variability and Risk Stratification in Cardiovascular Disease. [cited 2018 Jul 11]; Available from: www.ipej.org
  31. 31.
    Richman, J. S., and Moorman, J. R., Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Circ Physiol. 278:H2039–H2049, 2000.CrossRefGoogle Scholar
  32. 32.
    Weippert, M., Behrens, M., Rieger, A., Behrens, K., Weippert, M., Behrens, M. et al., Sample Entropy and Traditional Measures of Heart Rate Dynamics Reveal Different Modes of Cardiovascular Control During Low Intensity Exercise. Entropy. Multidisciplinary Digital Publishing Institute 16:5698–5711, 2014.Google Scholar
  33. 33.
    Tucci, H. T., Martins, J., GDC, S., PMF, C., and de Oliveira, A. S., Closed Kinetic Chain Upper Extremity Stability test (CKCUES test): a reliability study in persons with and without shoulder impingement syndrome. BMC Musculoskelet Disord. BioMed Central 15(1), 2014.Google Scholar
  34. 34.
    Furlan, L., and Sterr, A., The Applicability of Standard Error of Measurement and Minimal Detectable Change to Motor Learning Research-A Behavioral Study. Front Hum Neurosci. Frontiers Media SA 12:95, 2018.CrossRefGoogle Scholar
  35. 35.
    Kovacs, F. M., Abraira, V., Royuela, A., Corcoll, J., Alegre, L., Tomás, M. et al., Minimum detectable and minimal clinically important changes for pain in patients with nonspecific neck pain. BMC Musculoskelet. Disord. 9:43, 2008.CrossRefGoogle Scholar
  36. 36.
    Williams, D.P., Jarczok, M.N., Ellis, R.J., Hillecke, T.K., Thayer, J.F., Koenig, J., Two-week test-retest reliability of the Polar® RS800CX™ to record heart rate variability. Clin Physiol Funct Imaging. 2017 [cited 2018 Jul 8];37:776–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26815165 CrossRefGoogle Scholar
  37. 37.
    Gisselman, A.S., D’Amico, M., and Smoliga, J.M., Optimizing inter-session reliability of heart rate variability – the effects of artefact correction and breathing type. J Strength Cond Res. 2017 [cited 2018 Jul 8];1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29023323
  38. 38.
    Mkacher, W., Tabka, Z., and Trabelsi, Y., Minimal Detectable Change for Balance Measurements in Patients With COPD. J Cardiopulm Rehabil Prev. 2017 [cited 2018 Jul 8];37:223–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28449004 CrossRefGoogle Scholar
  39. 39.
    Costa, A. C. S., Filho, A. V. D., Packer, A. C., and Rodrigues-Bigaton, D., Intra and inter-rater reliability of infrared image analysis of masticatory and upper trapezius muscles in women with and without temporomandibular disorder. Braz J Phys Ther. 17:24–31, 2013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Daniela Bassi
    • 1
    • 2
    Email author return OK on get
  • Aldair Darlan Santos-de-Araújo
    • 3
  • Patrícia Faria Camargo
    • 4
  • Almir Vieira Dibai-Filho
    • 5
  • Moyrane Abreu da Fonseca
    • 6
  • Renata Gonçalves Mendes
    • 4
  • Audrey Borghi-Silva
    • 4
  1. 1.Postgraduate Program in Management and Health ServicesCeuma UniversitySão LuísBrazil
  2. 2.Departamento de FisioterapiaUniversidade CeumaSão LuísBrazil
  3. 3.Department of Physical TherapyTiradentes University CenterMaceióBrazil
  4. 4.Department of Physical TherapyFederal University of São CarlosSão CarlosBrazil
  5. 5.Department of Physical EducationFederal University of MaranhãoSão LuísBrazil
  6. 6.Department of Physical TherapyCeuma UniversitySão LuísBrazil

Personalised recommendations