Advertisement

Journal of Medical Systems

, 42:225 | Cite as

Incorporating EBO-HSIC with SVM for Gene Selection Associated with Cervical Cancer Classification

  • S. Geeitha
  • M. Thangamani
Transactional Processing Systems
  • 24 Downloads
Part of the following topical collections:
  1. Transactional Processing Systems

Abstract

Microarray technology is utilized by the biologists, in order to compute the expression levels of thousands of genes. Cervical cancer classification utilizing gene expression data depends upon conventional supervised learning methods, wherein only labeled data could be used for learning. The previous methodologies had problem with appropriate feature selection as well as accurateness of classification outcomes. So, the entire performance of the cancer classification is decreased meaningfully. With the aim of overcoming the aforesaid problems, Enhanced Bat Optimization Algorithm with Hilbert-Schmidt Independence Criterion (EBO-HSIC) and Support Vector Machine (SVM) algorithm is presented in this research for identifying the specific genes from the gene expression dataset that belongs to cancer microarray. This proposed system contains phases of instance normalization, module detection, gene selection and classification. By Fuzzy C Means (FCM) algorithm, the normalization is performed for eliminating the inappropriate features from the gene dataset. Meanwhile, for effective feature selection, the EBO algorithm is used for producing more appropriate features via improved objective function values. For determining a subset of the most informative genes utilizing a rapid as well as scalable bat algorithm, this proposed method focuses on measuring the dependence amid Differentially Expressed Genes (DEGs) as well as the gene significance. The algorithm is dependent upon the HSIC and was partially enthused by EBO. With the help of SVM classifier, these gene features are categorized very precisely. Experimentation outcomes demonstrate that the presented EBO with SVM algorithm confirms a clear-cut classification performance for the given gene expression datasets. Hence the result provides higher performance by launching EBO with SVM algorithm to obtain greater accuracy, recall, precision, f-measure and less time complexity more willingly than the previous techniques.

Keywords

Cancer classification Gene selection Enhanced bat optimization (EBO) Classifier And SVM algorithm 

References

  1. 1.
    Denny, L., Cervical cancer: Prevention and treatment. Discov Med. 14:125–131, 2012.PubMedGoogle Scholar
  2. 2.
    Satija, A., Cervical cancer in India. South Asia Centre for chronic disease.[accessed February16, 2014], 2014. Available from: http://sancd.Org/uploads/ pdf/cervical_cancer.Pdf, 2.
  3. 3.
    Arbyn, M., Castellsague, X., DeSanjose, S. et al., Worldwide burden of cervical cancer. Ann. Oncol. 22:2675–2686, 2011.CrossRefGoogle Scholar
  4. 4.
    Yeole, B. B., Kumar, A. V., Kurkureet, A., and Sunny, L., Population-based survival from cancers of breast, cervix and ovary in women in Mumbai. Asian Pac. J Cancer Prev. 5:308–315, 2004.PubMedGoogle Scholar
  5. 5.
    Bruni, L., Barrionuevo-Rosas, L., Albero, G., Serrano, B., Mena, M. and Gómez, D., ICO information Centre on HPV and Cancer. Human papillomavirus and related diseases in Ghana. Summary Report, HI Centre, Editor, 2015.Google Scholar
  6. 6.
    Gadducci, A., Barsotti, C., Cosio, S., Domenici, L., and Riccardo, A. G., Smoking habit, immune suppression, oral contraceptive use, and hormone replacement therapy use and cervical carcinogenesis: A review of the literature. Gynecol. Endocrinol. 27(8):597–604, 2011.CrossRefGoogle Scholar
  7. 7.
    Stuart, C., and Ash, M., Gynaecology by ten teachers (18 ed.). London, U.K: Hodder education, 2006.Google Scholar
  8. 8.
    Croce, C. M., Oncogenes and cancer. N. Engl. J. Med. 358(5):502–511, 2008.CrossRefGoogle Scholar
  9. 9.
    Wang, S. S., Gonzalez, P., Yu, K., Porras, C., Li, Q., Safaeian, M., Rodriguez, A. C., Sherman, M. E., Bratti, C., Schiffman, M., and Wacholder, S., Common genetic variants and risk for HPV persistence and progression to cervical cancer. PloS one 5(1):e8667, 2010.CrossRefGoogle Scholar
  10. 10.
    Huang, D. S., and Yu, H. J., Normalized feature vectors: A novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans. Comput. Biol. Bioinformat. 10(2):457–467, 2013.CrossRefGoogle Scholar
  11. 11.
    Wang, S. L., Zhu, Y., Jia, W., and Huang, D. S., Robust classification method of tumor subtype by using correlation filters. IEEE/ACM Trans. Comput. Biol. Bioinformat. 9(2):580–591, 2012.CrossRefGoogle Scholar
  12. 12.
    Bergmann, S. et al., Similarities and differences in genome-wide expression data of six organisms. PLoSBiol 2:E9, 2004.CrossRefGoogle Scholar
  13. 13.
    Hudson, N. J., Reverter, A., and Dalrymple, B. P., A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoSComput. Biol. 5(5):e1000382, 2009.Google Scholar
  14. 14.
    Maji, P., F-information measures for efficient selection of discriminative genes from microarray data. IEEE Trans. Biomed. Eng. 56(4):1063–1069, 2009.CrossRefGoogle Scholar
  15. 15.
    Guyon, I., and Elisseeff, A., An introduction to variable and feature selection. J. Mach. Learn. Res. 3:1157–1182, 2003.Google Scholar
  16. 16.
    Peng, H., Long, F., and Ding, C., Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8):1226–1238, 2005.CrossRefGoogle Scholar
  17. 17.
    Cheng, Q., Zhou, H., and Cheng, J., The fisher-Markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 33(6):1217–1233, 2011.CrossRefGoogle Scholar
  18. 18.
    Lee, K. S., and Geem, Z. W., A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput. Methods Appl .Mech. Eng. 194(36–38):3902–3933, 2005.CrossRefGoogle Scholar
  19. 19.
    Yang, X.S., A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65–74). Springer, Berlin, Heidelberg, 2010.CrossRefGoogle Scholar
  20. 20.
    Tang, E.K., Suganthan, P.N. and Yao, X., Feature selection for microarray data using least squares SVM and particle swarm optimization. IEEE Symp. Comput. Intell. Bioinform. Comput. Biol. 2005 (CIBCB'05), 1–8, 2005.Google Scholar
  21. 21.
    Gretton, A., Bousquet, O., Smola, A. and Schölkopf, B., Measuring statistical dependence with Hilbert-Schmidt norms. In International conference on algorithmic learning theory (pp. 63–77). Springer, Berlin, Heidelberg, 2005.Google Scholar
  22. 22.
    Hernandez, J. C., Duval, B., and Hao, J.-K., SVM-based local search for gene selection and classification of microarray data. Bioinform. Res. Dev. Springer, Berlin, Heidelberg. 499–508, 2008.Google Scholar
  23. 23.
    Chen, X., Jiang, J., Shen, H., and Hu, Z., Genetic susceptibility of cervical cancer. J. Biomed. Res. 25(3):155–164, 2011.CrossRefGoogle Scholar
  24. 24.
    Thomas, A., Mahantshetty, U., Kannan, S., Deodhar, K., Shrivastava, S. K., Kumar-Sinha, C., and Mulherkar, R., Expression profiling of cervical cancers in Indian women at different stages to identify gene signatures during progression of the disease. Canc. Med 2(6):836–848, 2013.CrossRefGoogle Scholar
  25. 25.
    Ongenaert, M., Wisman, G. B. A., Volders, H. H., Koning, A. J., van der Zee, A. G., Van Criekinge, W., and Schuuring, E., Discovery of DNA methylation markers in cervical cancer using relaxation ranking. BMC Med. Genom. 1(1):57, 2008.CrossRefGoogle Scholar
  26. 26.
    Viswanathan, V. and Vineetha, S., Early detection of cervical cancer using microarray analysis and gene regulatory rules. International Conference on Emerging Technological Trends (ICETT), pp. 1–6, 2016.Google Scholar
  27. 27.
    Lee, H. S., Yun, J. H., Jung, J., Yang, Y., Kim, B. J., Lee, S. J., Yoon, J. H., Moon, Y., Kim, J. M., and Kwon, Y. I., Identification of differentially-expressed genes by DNA methylation in cervical cancer. Oncol. Lett. 9(4):1691–1698, 2015.CrossRefGoogle Scholar
  28. 28.
    Mine, K. L., Shulzhenko, N., Yambartsev, A., Rochman, M., Sanson, G. F., Lando, M., Varma, S., Skinner, J., Volfovsky, N., Deng, T., and Brenna, S. M., Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nat. Commun. 4(1806):1–11, 2013.Google Scholar
  29. 29.
    Langfelder, P., and Horvath, S., WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9(1):1–13, 2008.CrossRefGoogle Scholar
  30. 30.
    DiLeo, M. V., Strahan, G. D., den Bakker, M., and Hoekenga, O. A., Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One 6(10):e26683, 2011.CrossRefGoogle Scholar
  31. 31.
    Chuang, K. S., Tzeng, H. L., Chen, S., Wu, J., and Chen, T. J., Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imag. Graph. 30(1):9–15, 2006.CrossRefGoogle Scholar
  32. 32.
    Zhang, S., Wang, R. S., and Zhang, X. S., Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Phys. A: Stat. Mech. Appl. 374(1):483–490, 2007.CrossRefGoogle Scholar
  33. 33.
    Van der Laan, M., Pollard, K., and Bryan, J., A new partitioning around medoids algorithm. J. Stat. Comput. Simul 73(8):575–584, 2003.CrossRefGoogle Scholar
  34. 34.
    Langfelder, P., Zhang, B., and Horvath, S., Defining clusters from a hierarchical cluster tree: The dynamic tree cut package for R. Bioinformatics 24(5):719–720, 2007.CrossRefGoogle Scholar
  35. 35.
    Rai, P., and Singh, S., A survey of clustering techniques. Int. J. Comput. Appl. 7(12):1–5, 2010.Google Scholar
  36. 36.
    Bhat, A., K-medoids clustering using partitioning around medoids for performing face recognition. Int. J. Soft Comput. Math. Contrl. 3(3):1–12, 2014.CrossRefGoogle Scholar
  37. 37.
    Song, J. B., Borgwardt, K. M., Gretton, A., and Smola, A. J., Gene selection via the BAHSIC family of algorithms. Bioinf. 23:i490–i498, 2007.CrossRefGoogle Scholar
  38. 38.
    Yang, X. S., and Hossein Gandomi, A., Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 29(5):464–483, 2012.CrossRefGoogle Scholar
  39. 39.
    Gandomi, A. H., Yang, X. S., Alavi, A. H., and Talatahari, S., Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 22(6):1239–1255, 2013.CrossRefGoogle Scholar
  40. 40.
    Yang, X. S., Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 3(5):267–274, 2011.CrossRefGoogle Scholar
  41. 41.
    Spitzer, F., Principles of random walk (Vol. 34). Springer Science & Business Media, 2013.Google Scholar
  42. 42.
    Wang, L. Ed., 2005. Support vector machines: Theory and applications (Vol. 177). Springer Science & Business Media, 2005.Google Scholar
  43. 43.
    Fung, G. M., and Mangasarian, O. L., Multicategory proximal support vector machine classifiers. Mach. Learn. 59(1–2):77–97, 2005.CrossRefGoogle Scholar
  44. 44.
    Min, J. H., and Lee, Y. C., Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Syst. Appl. 28(4):603–614, 2005.CrossRefGoogle Scholar
  45. 45.
    Widodo, A., and Yang, B. S., Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Sign. Process. 21(6):2560–2574, 2007.CrossRefGoogle Scholar
  46. 46.
    Sokolova, M., and Lapalme, G., A systematic analysis of performance measures for classification tasks. Inform. Process. Manag. 45(4):427–437, 2009.CrossRefGoogle Scholar
  47. 47.
    García, S., Fernández, A., Luengo, J., and Herrera, F., A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability. Soft Comput. 13(10):959–977, 2009.CrossRefGoogle Scholar
  48. 48.
    Pepe, M. S., Feng, Z., Janes, H., Bossuyt, P. M., and Potter, J. D., Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: Standards for study design. J. Natl. Cancer Instit. 100(20):1432–1438, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information TechnologyMahendra Engineering College for WomenTiruchengodeIndia
  2. 2.Department of Computer Science EngineeringKongu Engineering CollegePerunduraiIndia

Personalised recommendations