Advertisement

Journal of Medical Systems

, 42:146 | Cite as

Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs

  • Szilárd VajdaEmail author
  • Alexandros Karargyris
  • Stefan Jaeger
  • K.C. Santosh
  • Sema Candemir
  • Zhiyun Xue
  • Sameer Antani
  • George Thoma
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Advanced Computational Intelligence and Soft Computing in Medical Imaging

Abstract

To detect pulmonary abnormalities such as Tuberculosis (TB), an automatic analysis and classification of chest radiographs can be used as a reliable alternative to more sophisticated and technologically demanding methods (e.g. culture or sputum smear analysis). In target areas like Kenya TB is highly prevalent and often co-occurring with HIV combined with low resources and limited medical assistance. In these regions an automatic screening system can provide a cost-effective solution for a large rural population. Our completely automatic TB screening system is processing the incoming CXRs (chest X-ray) by applying image preprocessing techniques to enhance the image quality followed by an adaptive segmentation based on model selection. The delineated lung regions are described by a multitude of image features. These characteristics are than optimized by a feature selection strategy to provide the best description for the classifier, which will later decide if the analyzed image is normal or abnormal. Our goal is to find the optimal feature set from a larger pool of generic image features, –used originally for problems such as object detection, image retrieval, etc. For performance evaluation measures such as under the curve (AUC) and accuracy (ACC) were considered. Using a neural network classifier on two publicly available data collections, –namely the Montgomery and the Shenzhen dataset, we achieved the maximum area under the curve and accuracy of 0.99 and 97.03%, respectively. Further, we compared our results with existing state-of-the-art systems and to radiologists’ decision.

Keywords

Tuberculosis Chest x-ray Automatic chest x-ray analysis Feature selection Neural networks HOG Automatic TB screening 

Notes

Acknowledgments

This research is supported in past by the Intramural Research Program of the National Institutes of Health (NIH), National Library of Medicine, and Lister Hill National Center for Biomedical Communications (LHNCBC).

The authors are grateful to Mr. Rodney Long for the fruitful discussions during the development of this project.

Funding Information

This research was supported in part by the Intramural Research Program of the National Institutes of Health (NIH), National Library of Medicine (NLM), and Lister Hill National Center for Biomedical Communications (LHNCBC).

Compliance with Ethical Standards

Conflict of interests

Authors declare that they have no conflict of interest.

Ethical approval

All images used in this study were collected prior to this study during routine clinical care. They were de-identified at source and have been exempted from review (NIH IRB# 5357).

References

  1. 1.
    Banik, S., Rangayyan, R.M., and Boag, G.S., Automatic segmentation of the ribs, the vertebral column, and the spinal canal in pediatric computed tomographic images. J. Digit. Imaging 23(3):301–322, 2010.CrossRefPubMedGoogle Scholar
  2. 2.
    Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., and Greenspan, H.: Chest pathology detection using deep learning with non-medical training. In: 12Th IEEE International Symposium on Biomedical Imaging, ISBI 2015, brooklyn, April 16-19, 2015, pp. 294–297.  https://doi.org/10.1109/ISBI.2015.7163871, 2015
  3. 3.
    Bishop, C.M., Neural networks for pattern recognition. New York: Oxford University Press, inc., 1995.Google Scholar
  4. 4.
    Boykov, Y., Veksler, O., and Zabih, R., Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11):1222–1239, 2001.CrossRefGoogle Scholar
  5. 5.
    Candemir, S., Jaeger, S., Palaniappan, K., Musco, J.P., Singh, R.K., Xue, Z., Karargyris, A., Antani, S., Thoma, G.R., and McDonald, C.J., Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 33(2):577–590, 2014.CrossRefPubMedGoogle Scholar
  6. 6.
    Chatzichristofis, S.A., and Boutalis, Y.S.: Cedd: Color and edge directivity descriptor: A compact descriptor for image indexing and retrieval. In: Proceedings of the 6th International Conference on Computer Vision Systems, ICVS’08, pp. 312–322. Springer, Berlin, 2008.Google Scholar
  7. 7.
    Chatzichristofis, S.A., and Boutalis, Y.S.: Fcth: Fuzzy color and texture histogram - a low level feature for accurate image retrieval. In: Proceedings of the 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS ’08, pp. 191–196. IEEE Computer Society, Washington, 2008.Google Scholar
  8. 8.
    Chauhan, A., Chauhan, D., and Rout, C.: Role of Gist and PHOG Features in Computer-Aided Diagnosis of Tuberculosis without Segmentation. PLoS ONE 9(11): e112980.  https://doi.org/10.1371/journal.pone.0112980, 2014
  9. 9.
    Dalal, N., and Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20–26 june 2005, San diego, pp. 886–893, 2005.Google Scholar
  10. 10.
    Depeursinge, A., Iavindrasana, J., Hidki, A., Cohen, G., Geissbühler, A., Platon, A., Poletti, P., and Müller, H., Comparative performance analysis of state-of-the-art classification algorithms applied to lung tissue categorization. J. Digit. Imaging 23(1):18–30, 2010.CrossRefPubMedGoogle Scholar
  11. 11.
    Doi, K., Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4–5):198–211, 2007.  https://doi.org/10.1016/j.compmedimag.2007.02.002. http://www.sciencedirect.com/science/article/pii/S0895611107000262. Computer-aided Diagnosis (CAD) and Image-guided Decision Support.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fawcett, T., An introduction to ROC analysis. Pattern Recogn. Lett. 27(8):861–874, 2006.CrossRefGoogle Scholar
  13. 13.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., and Viergever, M.A.: Muliscale vessel enhancement filtering. In: Medical Image Computing and Computer-assisted Intervention - MICCAI’98, first international conference, Cambridge, October 11-13, 1998, pp. 130–137, 1998Google Scholar
  14. 14.
    van Ginneken, B., ter Haar Romeny, B.M., and Viergever, M.A., Computer-aided diagnosis in chest radiography: A survey. IEEE Trans. Med. Imaging 20(12):1228–1241, 2001.CrossRefPubMedGoogle Scholar
  15. 15.
    van Ginneken, B., Hogeweg, L., and Prokop, M., Computer-aided diagnosis in chest radiography: Beyond nodules. Eur. J. Radiol. 72(2):226–230, 2009.  https://doi.org/10.1016/j.ejrad.2009.05.061. http://www.sciencedirect.com/science/article/pii/S0720048X09003581. Digital Radiography.CrossRefPubMedGoogle Scholar
  16. 16.
    Gonzalez, R.C., and Woods, R.E., Digital image processing. 3 ed. Upper Saddle River: Prentice-Hall, Inc., 2006.Google Scholar
  17. 17.
    Guyon, I., and Elisseeff, A., An introduction to variable and feature selection. J. Mach. Learn. Res. 3: 1157–1182, 2003. http://dl.acm.org/citation.cfm?id=944919.944968.Google Scholar
  18. 18.
    Hinton, G., and Salakhutdinov, R., Reducing the dimensionality of data with neural networks. Science 313 (5786):504–507, 2006.CrossRefPubMedGoogle Scholar
  19. 19.
    de Hoop, B., Schaefer-Prokop, C., Gietema, H.A., de Jong, P.A., van Ginneken, B., van Klaveren, R.J., and Prokop, M., Screening for lung cancer with digital chest radiography: Sensitivity and number of secondary work-up ct examinations. Radiology 255(2):629–637, 2010.CrossRefPubMedGoogle Scholar
  20. 20.
    Howarth, P., Yavlinsky, A., Heesch, D., and Ruger, S.: Medical image retrieval using texture, locality and colour. In: Peters, C., Clough, P., Gonzalo, J., Jones, G., Kluck, M., and Magnini, B. (Eds.) Multilingual Information Access for Text, Speech and Images, Lecture Notes in Computer Science, Vol. 3491, pp. 740–749. Springer, Berlin , 2005.Google Scholar
  21. 21.
    Hwang, S., Kim, H., Jeong, J., and Kim, H.: A novel approach for tuberculosis screening based on deep convolutional neural networks. In: Medical imaging 2016: Computer-aided diagnosis, San diego, 27 february - 3 march 2016, p. 97852w, 2016Google Scholar
  22. 22.
    Islam, M.T., Aowal, M.A., Minhaz, A.T., and Ashraf, K.: Abnormality detection and localization in chest x-rays using deep convolutional neural networks. CoRR arXiv:abs/1705.09850, 2017
  23. 23.
    Jaeger, S., Karargyris, A., Candemir, S., Folio, L., Siegelman, J., Callaghan, F.M., Xue, Z., Palaniappan, K., Singh, R.K., Antani, S., Thoma, G.R., Wang, Y., Lu, P., and McDonald, C.J., Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 33(2):233–245, 2014.CrossRefPubMedGoogle Scholar
  24. 24.
    Jaeger, S., Karargyris, A., Candemir, S., Siegelman, J., Folio, L., Antani, S., and Thoma, G., Automatic screening for tuberculosis in chest radiographs: a survey. Quant. Imaging Med. Surg. 3(2):89, 2013.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Karargyris, A., Siegelman, J., Tzortzis, D., Jaeger, S., Candemir, S., Xue, Z., Santosh, K.C., Vajda, S., Antani, S.K., Folio, L., and Thoma, G.R., Combination of texture and shape features to detect pulmonary abnormalities in digital chest x-rays. Int. J. Comput. Assist. Radiol. Surg. 11(1):99–106, 2016.  https://doi.org/10.1007/s11548-015-1242-x.CrossRefPubMedGoogle Scholar
  26. 26.
    Katsuragawa, S., and Doi, K., Computer-aided diagnosis in chest radiography. Comput. Med. Imaging Graph. 31(4–5):212–223, 2007.  https://doi.org/10.1016/j.compmedimag.2007.02.003. http://www.sciencedirect.com/science/article/pii/S0895611107000286. Computer-aided Diagnosis (CAD) and Image-guided Decision Support.CrossRefPubMedGoogle Scholar
  27. 27.
    KC, S., Vajda, S., Antani, S., and Thoma, G.: Automatic pulmonary abnormality screening using thoracic edge map. In: Int. Symposium on computer-based medical systems, pp. 360–361, 2015Google Scholar
  28. 28.
    Kim, H.E., and Hwang, S.: Scale-invariant feature learning using deconvolutional neural networks for weakly-supervised semantic segmentation. CoRR arXiv:abs/1602.04984, 2016
  29. 29.
    Kooi, T., Litjens, G.J.S., van Ginneken, B., Gubern-mérida, A., Sánchez, C.I., Mann, R., den Heeten, A., and Karssemeijer, N., Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35:303–312, 2017.  https://doi.org/10.1016/j.media.2016.07.007.CrossRefPubMedGoogle Scholar
  30. 30.
    Li, Q., Recent progress in computer-aided diagnosis of lung nodules on thin-section {CT}. Comput. Med. Imaging Graph. 31(4–5):248–257, 2007.  https://doi.org/10.1016/j.compmedimag.2007.02.005. http://www.sciencedirect.com/science/article/pii/S0895611107000316. Computer-aided Diagnosis (CAD) and Image-guided Decision Support.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Litjens, G.J.S., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van Ginneken, B., and Sánchez, C.I., A survey on deep learning in medical image analysis. Med. Image Anal. 42:60–88, 2017.  https://doi.org/10.1016/j.media.2017.07.005.CrossRefPubMedGoogle Scholar
  32. 32.
    Liu, C., Yuen, J., and Torralba, A., Sift flow: Dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5):978–994, 2011.CrossRefPubMedGoogle Scholar
  33. 33.
    Lodwick, G.S., Keats, T.E., and Dorst, J.P., The coding of roentgen images for computer analysis as applied to lung cancer. Radiology 81(2):185–200, 1963.CrossRefPubMedGoogle Scholar
  34. 34.
    Lux, M.: Caliph & emir: Mpeg-7 photo annotation and retrieval. In: Proceedings of the 17th ACM International Conference on Multimedia, MM ’09, pp. 925–926. ACM, New York, 2009.Google Scholar
  35. 35.
    Maduskar, P., Hogeweg, L., Philipsen, R., and van Ginneken, B., 2013Google Scholar
  36. 36.
    McAdams, H.P., Samei, E., James Dobbins, I., Tourassi, G.D., and Ravin, C.E., Recent advances in chest radiography. Radiology 241(3):663–683, 2006.CrossRefPubMedGoogle Scholar
  37. 37.
    Murphy, K.P., Torralba, A., Eaton, D., and Freeman, W.T.: Object detection and localization using local and global features. In: Toward Category-level Object Recognition, pp. 382–400, 2006Google Scholar
  38. 38.
    Obuchowski, N.A., Roc analysis. Fundamentals of Clinical Research for Radiologists 184(2):364–372, 2005.Google Scholar
  39. 39.
    Ojala, T., Pietikäinen, M., and Harwood, D., A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1):51–59, 1996.CrossRefGoogle Scholar
  40. 40.
    Organization, W.H.: Global tuberculosis report. http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf. Online; accessed 23-March-2015, 2012
  41. 41.
    Organization, W.H.: Global tuberculosis report. http://apps.who.int/iris/bitstream/10665/137094/1/9789241564809_eng.pdf. Online; accessed 20-April-2018, 2017
  42. 42.
    Rahman, M.M., You, D., Simpson, M.S., Antani, S., Demner-fushman, D., and Thoma, G.R., Interactive cross and multimodal biomedical image retrieval based on automatic region-of-interest (ROI) identification and classification. IJMIR 3(3):131–146, 2014.Google Scholar
  43. 43.
    Saeys, Y., Inza, I.N., and Larrañaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517, 2007.CrossRefPubMedGoogle Scholar
  44. 44.
    Santosh, K.C., Vajda, S., Antani, S.K., and Thoma, G.R., Edge map analysis in chest x-rays for automatic pulmonary abnormality screening. Int. J. Comput. Assist. Radiol. Surg. 11(9):1637–1646, 2016.  https://doi.org/10.1007/s11548-016-1359-6.CrossRefPubMedGoogle Scholar
  45. 45.
    Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K., Matsui, M., Fujita, H., Kodera, Y., and Doi, K., Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists detection of pulmonary nodules. Am. J. Roentgenol. 174:71–74, 2000.CrossRefGoogle Scholar
  46. 46.
    Shiraishi, J., Li, F., and Doi, K., Computer-aided diagnosis for improved detection of lung nodules by use of posterior-anterior and lateral chest radiographs. Acad. Radiol. 14(1):28–37, 2007.  https://doi.org/10.1016/j.acra.2006.09.057. http://www.sciencedirect.com/science/article/pii/S1076633206005599.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shiraishi, J., Li, Q., Appelbaum, D., and Doi, K., Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin. Nucl. Med. 41(6):449–462, 2011.  https://doi.org/10.1053/j.semnuclmed.2011.06.004. http://www.sciencedirect.com/science/article/pii/S0001299811000742. Image Perception in Nuclear Medicine.CrossRefPubMedGoogle Scholar
  48. 48.
    Singh, S., and Sharma, M.: Texture analysis experiments with meastex and vistex benchmarks. In: Singh, S., Murshed, N., and Kropatsch, W. (Eds.) Advances in Pattern Recognition — ICAPR 2001, Lecture Notes in Computer Science, pp. 419–426. Springer, Berlin, 2001.Google Scholar
  49. 49.
    Smialowski, P., Frishman, D., and Kramer, S., Pitfalls of supervised feature selection. Bioinformatics 26(3):440–443 , 2010.CrossRefPubMedGoogle Scholar
  50. 50.
    Vajda, S., Rangoni, Y., and Cecotti, H., Semi-automatic ground truth generation using unsupervised clustering and limited manual labeling: Application to handwritten character recognition. Pattern Recogn. Lett. 58 (0):23–28, 2015.CrossRefGoogle Scholar
  51. 51.
    Wang, S.H., Muhammad, K., Lv, Y., Sui, Y., Han, L., and Zhang, Y.D., Identification of alcoholism based on wavelet renyi entropy and three-segment encoded jaya algorithm. Complexity 2018:13, 2018.Google Scholar
  52. 52.
    Weinberger, S., Cockrill, B., and Mandel, J.: Principles of pulmonary medicine. Elsevier Health Sciences, 2013Google Scholar
  53. 53.
    Zhang, Y., Sun, Y., Phillips, P., Liu, G., Zhou, X., and Wang, S., A multilayer perceptron based smart pathological brain detection system by fractional fourier entropy. J. Med. Syst. 40(7):1–11, 2016.CrossRefGoogle Scholar
  54. 54.
    Zhu, Y., Tan, Y., Hua, Y., Wang, M., Zhang, G., and Zhang, J., Feature selection and performance evaluation of support vector machine (svm)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. J. Digit. Imaging 23(1):51–65, 2010.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Central Washington UniversityEllensburgUSA
  2. 2.IBM Almaden ResearchSan JoseUSA
  3. 3.University of South DakotaVermillionUSA
  4. 4.National Library of MedicineNational Institutes of HealthBethesdaUSA

Personalised recommendations