Advertisement

Journal of Medical Systems

, 42:133 | Cite as

An Electronic Dashboard to Monitor Patient Flow at the Johns Hopkins Hospital: Communication of Key Performance Indicators Using the Donabedian Model

  • Diego A. Martinez
  • Erin M. Kane
  • Mehdi Jalalpour
  • James Scheulen
  • Hetal Rupani
  • Rohit Toteja
  • Charles Barbara
  • Bree Bush
  • Scott R. Levin
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement

Abstract

Efforts to monitoring and managing hospital capacity depend on the ability to extract relevant time-stamped data from electronic medical records and other information technologies. However, the various characterizations of patient flow, cohort decisions, sub-processes, and the diverse stakeholders requiring data visibility create further overlying complexity. We use the Donabedian model to prioritize patient flow metrics and build an electronic dashboard for enabling communication. Ten metrics were identified as key indicators including outcome (length of stay, 30-day readmission, operating room exit delays, capacity-related diversions), process (timely inpatient unit discharge, emergency department disposition), and structural metrics (occupancy, discharge volume, boarding, bed assignation duration). Dashboard users provided real-life examples of how the tool is assisting capacity improvement efforts, and user traffic data revealed an uptrend in dashboard utilization from May to October 2017 (26 to 148 views per month, respectively). Our main contributions are twofold. The former being the results and methods for selecting key performance indicators for a unit, department, and across the entire hospital (i.e., separating signal from noise). The latter being an electronic dashboard deployed and used at The Johns Hopkins Hospital to visualize these ten metrics and communicate systematically to hospital stakeholders. Integration of diverse information technology may create further opportunities for improved hospital capacity.

Keywords

Systems engineering Dashboard Patient flow Hospital capacity Hospital overcrowding 

Notes

Compliance with ethical standards

The authors whose names are listed above certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

References

  1. 1.
    National Center for Health Statistics. Health, United States, 2015: With Special Feature on Racial and Ethnic Health Disparities. Hyattsville, MD; 2016.Google Scholar
  2. 2.
    Porter, M. E., What is value in health care? N Engl J Med. Mass Medical Soc 363(26):2477–2481, 2010.CrossRefGoogle Scholar
  3. 3.
    Warden G, Griffin RB, Erickson SM, Mchugh M, Wheatley B, Dharshi AS, et al. Hospital-based emergency care: At the breaking point. 2006Google Scholar
  4. 4.
    Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., and Escobar, G., Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Aff. Health Affairs 33(7):1123–1131, 2014.CrossRefPubMedGoogle Scholar
  5. 5.
    Workman, M., An experimental assessment of semantic apprehension of graphical linguistics. Comput Human Behav. 24(6):2578–2596, 2008.CrossRefGoogle Scholar
  6. 6.
    Linder JA, Schnipper JL, Tsurikova R, Yu DT, Volk LA, Melnikas AJ, et al. Electronic health record feedback to improve antibiotic prescribing for acute respiratory infections. Am J Manag Care [Internet]. 2010 Dec;16(12 Suppl HIT):e311–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21322301
  7. 7.
    Batley NJ, Osman HO, Kazzi AA, Musallam KM. Implementation of an emergency department computer system: Design features that users value. J Emerg Med [Internet]. 2011 Dec;41(6):693–700. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20619572
  8. 8.
    Pablate J. The effect of electronic feedback on anesthesia providers’ timely preoperative antibiotic adminstration [Internet]. UNIVERSITY OF NORTH FLORIDA; 2009. Available from: http://gradworks.umi.com/33/88/3388792.html
  9. 9.
    Zaydfudim V, Dossett LA, Starmer JM, Arbogast PG, Feurer ID, Ray WA, et al. Implementation of a real-time compliance dashboard to help reduce SICU ventilator-associated pneumonia with the ventilator bundle. Arch Surg [Internet]. 2009 Jul;144(7):656–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19620546
  10. 10.
    Starmer J, Giuse D. A real-time ventilator management dashboard: Toward hardwiring compliance with evidence-based guidelines. AMIA Annu Symp Proc [Internet]. 2008;702–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18998939
  11. 11.
    McMenamin J, Nicholson R, Leech K. Patient Dashboard: The use of a colour-coded computerised clinical reminder in Whanganui regional general practices. J Prim Health Care [Internet]. 2011 Dec;3(4):307–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22132384
  12. 12.
    Morgan MB, Branstetter BF, Lionetti DM, Richardson JS, Chang PJ. The radiology digital dashboard: Effects on report turnaround time. J Digit Imaging [Internet]. 2008 Mar;21(1):50–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17334871
  13. 13.
    Badgeley MA, Shameer K, Glicksberg BS, Tomlinson MS, Levin MA, McCormick PJ, et al. EHDViz: Clinical dashboard development using open-source technologies. BMJ Open [Internet]. 2016;6(3):e010579. Available from: http://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2015-010579
  14. 14.
    Agarwal, S., Joshi, A., Finin, T., Yesha, Y., and Ganous, T., A pervasive computing system for the operating room of the future. Mob Networks Appl. 12(2–3):215–228, 2007.CrossRefGoogle Scholar
  15. 15.
    Benhamou P-Y. Improving diabetes management with electronic health records and patients’ health records. Diabetes Metab [Internet]. Elsevier; 2011;37(4):S53–S56. Available from:  https://doi.org/10.1016/S1262-3636(11)70966-1
  16. 16.
    WILBANKS BA, LANGFORD PA. A Review of Dashboards for Data Analytics in Nursing. CIN Comput Informatics, Nurs [Internet]. 2014 Nov;32(11):545–9. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00024665-201411000-00006
  17. 17.
    Kristy Gonzalez M, Bauhoff S, Blanchard JC, Abir NL, Smith A, Vesely J V, et al. The evolving role of emergency departments in the United States. Rand Heal Q. 2013;3(2).Google Scholar
  18. 18.
    Schuur, J., and Venkatesh, A., The growing role of emergency departments in hospital admissions. N Engl J Med. 367(5):391–393, 2012.CrossRefPubMedGoogle Scholar
  19. 19.
    Strauss AT, Martinez DA, Garcia-Arce A, Taylor S, Mateja C, Fabri PJ, et al. A user needs assessment to inform health information exchange design and implementation. BMC Med Inform Decis Mak [Internet]. 2015 Dec;15(1):81. Available from: http://www.biomedcentral.com/1472-6947/15/81
  20. 20.
    Martinez, D. A., Mora, E., Gemmani, M., and Zayas-Castro, J. L., Uncovering hospitalists’ information needs from outside healthcare facilities in the context of health information exchange using association rule learning. Appl Clin Inform. 6(4):684–697, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Martinez, D. A., Tsalatsanis, A., Yalcin, A., Zayas-Castro, J. L., and Djulbegovic, B., Activating clinical trials: A process improvement approach. Trials. BioMed Central 17(1):1, 2016.Google Scholar
  22. 22.
    France, D. J., Levin, S., Hemphill, R., Chen, K., Rickard, D., Makowski, R. et al., Emergency physicians’ behaviors and workload in the presence of an electronic whiteboard. Int J Med Inform. Elsevier 74(10):827–837, 2005.CrossRefGoogle Scholar
  23. 23.
    Hoot, N. R., LeBlanc, L. J., Jones, I., Levin, S. R., Zhou, C., Gadd, C. S. et al., Forecasting emergency department crowding: A prospective, real-time evaluation. J Am Med Informatics Assoc. Elsevier 16(3):338–345, 2009.CrossRefGoogle Scholar
  24. 24.
    Toerper MF, Flanagan E, Siddiqui S, Appelbaum J, Kasper EK, Levin S. Cardiac catheterization laboratory inpatient forecast tool: A prospective evaluation. J Am Med Informatics Assoc. The Oxford University Press; 2015;ocv124.Google Scholar
  25. 25.
    Barnes S, Hamrock E, Toerper M, Siddiqui S, Levin S. Real-time prediction of inpatient length of stay for discharge prioritization. J Am Med Informatics Assoc. The Oxford University Press; 2015;ocv106.Google Scholar
  26. 26.
    Hamrock, E., Parks, J., Scheulen, J., and Bradbury, F. J., Discrete event simulation for healthcare organizations: A tool for decision making. J Healthc Manag. Health Administration Press 58(2):110, 2013.Google Scholar
  27. 27.
    Scheulen, J. J., Li, G., and Kelen, G. D., Impact of ambulance diversion policies in urban, suburban, and rural areas of Central Maryland. Acad Emerg Med. Wiley Online Library 8(1):36–40, 2001.CrossRefGoogle Scholar
  28. 28.
    Kelen, G. D., Kraus, C. K., McCarthy, M. L., Bass, E., Hsu, E. B., Li, G. et al., Inpatient disposition classification for the creation of hospital surge capacity: A multiphase study. Lancet. Elsevier 368(9551):1984–1990, 2006.CrossRefGoogle Scholar
  29. 29.
    Brooks D, Rupani H. Real-time demand capacity and patient throughput management dashboard. 14/436,494, 2013.Google Scholar
  30. 30.
    Kane E, Scheulen J, Martinez D, Levin S, Busch B, Jacobs MM, et al. Use of Systems Engineering to Design a Hospital Command Center. In The Joint Commission Journal on Quality and Patient Safety; 2018.Google Scholar
  31. 31.
    Donabedian A. The Quality of Care. JAMA [Internet]. 1988 Sep 23;260(12):1743. Available from: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.1988.03410120089033
  32. 32.
    Agency for Healthcare Research and Quality. Types of Quality Measures [Internet]. Rockville, MD; 2011 [cited 2018 May 5]. Available from: http://www.ahrq.gov/professionals/quality-patient-safety/talkingquality/create/types.html
  33. 33.
    Shneiderman B. The eyes have it: A task by data type taxonomy for information visualizations. In: Visual Languages, 1996 Proceedings, IEEE Symposium on. 1996. p. 336–43.Google Scholar
  34. 34.
    Shneiderman, B., and Plaisant, C., Designing the user interface: Strategies for effective human-computer interaction. ACM SIGBIO Newsl. ACM 9(1):6, 1987.CrossRefGoogle Scholar
  35. 35.
    Koopman RJ, Kochendorfer KM, Moore JL, Mehr DR, Wakefield DS, Yadamsuren B, et al. A diabetes dashboard and physician efficiency and accuracy in accessing data needed for high-quality diabetes care. Ann Fam Med [Internet]. 9(5):398–405. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21911758
  36. 36.
    Ong M-S, Coiera E. A systematic review of failures in handoff communication during intrahospital transfers. Jt Comm J Qual patient Saf [Internet]. 2011 Jun;37(6):274–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21706987
  37. 37.
    Denton TA, Matloff JM. Optimizing cardiothoracic surgery information for a managed care environment. Ann Thorac Surg [Internet]. 1995 Nov;60(5):1522–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/000349759594076D
  38. 38.
    Ellwood PM, Enthoven AC. “Responsible choices”: The Jackson Hole Group plan for health reform. Health Aff (Millwood) [Internet]. 1995;14(2):24–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7657245
  39. 39.
    Solberg LI, Mosser G, McDonald S. The three faces of performance measurement: Improvement, accountability, and research. Jt Comm J Qual Improv [Internet]. 1997 Mar;23(3):135–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9103968
  40. 40.
    The “patient flow standard” and the 4-hour recommendation. Jt Comm Perspect [Internet]. 2013 Jun;33(6):1, 3–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23785957
  41. 41.
    Rajkumar R, Patel A, Murphy K, Colmers JM, Blum JD, Conway PH, et al. Maryland’s All-Payer Approach to Delivery-System Reform. N Engl J Med [Internet]. 2014 Feb 6;370(6):493–5. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMp1314868
  42. 42.
    Chalfin DB, Trzeciak S, Likourezos A, Baumann BM, Dellinger RP, DELAY-ED study group. Impact of delayed transfer of critically ill patients from the emergency department to the intensive care unit. Crit Care Med [Internet]. 2007 Jun;35(6):1477–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17440421
  43. 43.
    Hager DN, Chandrashekar P, Bradsher RW, Abdel-Halim AM, Chatterjee S, Sawyer M, et al. Intermediate care to intensive care triage: A quality improvement project to reduce mortality. J Crit Care [Internet]. 2017 Dec;42:282–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28810207
  44. 44.
    Harris S, Singer M, Rowan K, Sanderson C. Delay to admission to critical care and mortality among deteriorating ward patients in UK hospitals: A multicentre, prospective, observational cohort study. Lancet (London, England) [Internet]. 2015 Feb 26;385 Suppl:S40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26312862
  45. 45.
    McGowan JE, Truwit JD, Cipriano P, Howell RE, VanBree M, Garson A, et al. Operating room efficiency and hospital capacity: Factors affecting operating room use during maximum hospital census. J Am Coll Surg [Internet]. 2007 May;204(5):865–71-2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17481500
  46. 46.
    Dexter F, Epstein RH, Marcon E, de Matta R. Strategies to reduce delays in admission into a postanesthesia care unit from operating rooms. J perianesthesia Nurs Off J Am Soc PeriAnesthesia Nurses [Internet]. 2005 Apr;20(2):92–102. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15806526
  47. 47.
    Powell ES, Khare RK, Venkatesh AK, Van Roo BD, Adams JG, Reinhardt G. The relationship between inpatient discharge timing and emergency department boarding. J Emerg Med [Internet]. 2012 Feb;42(2):186–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20888163
  48. 48.
    Wertheimer B, Jacobs REA, Bailey M, Holstein S, Chatfield S, Ohta B, et al. Discharge before noon: An achievable hospital goal. J Hosp Med [Internet]. 2014 Apr;9(4):210–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24446232
  49. 49.
    Wertheimer B, Jacobs REA, Iturrate E, Bailey M, Hochman K. Discharge before noon: Effect on throughput and sustainability. J Hosp Med [Internet]. 2015 Oct;10(10):664–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26126432
  50. 50.
    Rajkomar A, Valencia V, Novelero M, Mourad M, Auerbach A. The association between discharge before noon and length of stay in medical and surgical patients. J Hosp Med [Internet]. 2016 Dec;11(12):859–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26717556

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Diego A. Martinez
    • 1
    • 2
  • Erin M. Kane
    • 1
  • Mehdi Jalalpour
    • 3
  • James Scheulen
    • 4
  • Hetal Rupani
    • 4
  • Rohit Toteja
    • 4
  • Charles Barbara
    • 4
  • Bree Bush
    • 5
  • Scott R. Levin
    • 1
  1. 1.Department of Emergency MedicineJohns Hopkins UniversityBaltimoreUSA
  2. 2.BaltimoreUnited States
  3. 3.Department of Civil and Environmental EngineeringCleveland State UniversityClevelandUSA
  4. 4.Department of Emergency MedicineJohns Hopkins MedicineBaltimoreUSA
  5. 5.GE Healthcare Camden GroupChicagoUSA

Personalised recommendations