Advertisement

Smartphone Applications to Perform Body Balance Assessment: a Standardized Review

  • Jose A. Moral-Munoz
  • Bernabe Esteban-Moreno
  • Enrique Herrera-Viedma
  • Manuel J. Cobo
  • Ignacio J. Pérez
Mobile & Wireless Health
Part of the following topical collections:
  1. Mobile & Wireless Health

Abstract

Body balance disorders are related to different injuries that contribute to a wide range of healthcare issues. The social and financial costs of these conditions are high. Therefore, quick and reliable body balance assessment can contribute to the prevention of injuries, as well as enhancement of clinical rehabilitation. Moreover, the use of smartphone applications is increasing rapidly since they incorporate different hardware components that allow for body balance assessment. The present study aims to show an analysis of the current applications available on Google Play StoreTM and iTunes App StoreTM to measure this physical condition, using the Mobile Application Rating Scale (MARS). Three iOS and two Android applications met the inclusion criteria. Three applications have scientific support, Balance test YMED, Balance Test by Slani, and Sway. Furthermore, according to MARS, the main scores for each evaluated domain were: Engagement (2.04), Functionality (3.8), Esthetics (3.53), and Information (3.80). The reviewed applications targeted to assess body balance obtained good mean scores. Sway is the app with highest scores in each MARS domain, followed by iBalance Fitness and Gyrobalance.

Keywords

mHealth Body balance Balance assessment Smartphone Rehabilitation 

Notes

Funding Information

This study was funded by FEDER funds in the Spanish Department for Economy and Competitiveness project (TIN2016-75850-R) and University of Cadiz project (PR2016-026).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Ehical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Alexander, N. B., Postural control in older adults. J. Am. Geriatr. Soc. 42(1):93–108, 1994.  https://doi.org/10.1111/j.1532-5415.1994.tb06081.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Amick, R. Z., Chaparro, A., and Patterson, J. A., Test-retest reliability of the sway balance mobile application. Journal of Mobile Technology in Medicine 4(2):40–47, 2015.  https://doi.org/10.7309/jmtm.4.2.6.CrossRefGoogle Scholar
  3. 3.
    Banos, O., Moral-Munoz, J. A., Diaz-Reyes, I., Arroyo-Morales, M., Damas, M., Herrera-Viedma, E., Hong, C. S., Lee, S., Pomares, H., Rojas, I., and Villalonga, C., mDurance: a novel mobile health system to support trunk endurance assessment. Sensors (Switzerland) 15(6):13,159–13,183, 2015.  https://doi.org/10.3390/s150613159. http://www.mdpi.com/1424-8220/15/6/13159/.CrossRefGoogle Scholar
  4. 4.
    Bardus, M., van Beurden, S. B., Smith, J. R., and Abraham, C., A review and content analysis of engagement, functionality, aesthetics, information quality, and change techniques in the most popular commercial apps for weight management. Int. J. Behav. Nutr. Phys. Act. 13:35, 2016.  https://doi.org/10.1186/s12966-016-0359-9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bittel, A. J., Elazzazi, A., and Bittel, D. C., Accuracy and precision of an accelerometer-based smartphone app designed to monitor and record angular movement over time. Telemedicine and e-Health 22(4):302–309, 2016.  https://doi.org/10.1089/tmj.2015.0063.CrossRefPubMedGoogle Scholar
  6. 6.
    Bos, L. D., Schouten, L. R., Cremer, O. L., Ong, D. S. Y., and Schultz, M. J., External validation of the APPS, a new and simple outcome prediction score in patients with the acute respiratory distress syndrome. Ann. Intensive Care 6(1):89, 2016.  https://doi.org/10.1186/s13613-016-0190-0.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Buijink, A. W. G., Visser, B. J., and Marshall, L., Medical apps for smartphones: Lack of evidence undermines quality and safety. Evid. Based Med. 18(3):90–92, 2012.  https://doi.org/10.1136/eb-2012-100885.CrossRefPubMedGoogle Scholar
  8. 8.
    Cho, S. H., Choi, M. H., and Goo, B. O., Effect of smart phone use on dynamic postural balance. J. Phys. Ther. Sci. 26(7):1013–1015, 2014.  https://doi.org/10.1589/jpts.26.1013.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cui, Y., Fu, C., Chang, H., Wu, Y., and Chang, P., Could people get quality apps they intend to get? taking finding stroke apps for example. Stud. Health Technol. Inform. 225:1040–1041, 2016.  https://doi.org/10.3233/978-1-61499-658-3-1040.PubMedGoogle Scholar
  10. 10.
    Davlin, C. D., Dynamic balance in high level athletes. Percept. Mot. Skills 98(3c):1171–1176, 2004.  https://doi.org/10.2466/pms.98.3c.1171-1176.CrossRefPubMedGoogle Scholar
  11. 11.
    Fleiss, J. L., Levin, B., and Paik, M. C., Statistical Methods for Rates and Proportions. New York: Wiley, 2013.Google Scholar
  12. 12.
    Gaikwad, B. D., Bobade, K. A., Jadhav, P. L., and Deokate, K. B., Human mobility change of state detection using a smartphone based on accelerometer sensor. International Journal of Engineering Science and Computing 6(4):4569–4571, 2016.  https://doi.org/10.4010/2016.1046.Google Scholar
  13. 13.
    Grainger, R., Townsley, H., White, B., Langlotz, T., and Taylor, W. J., Apps for people with rheumatoid arthritis to monitor their disease activity: a review of apps for best practice and quality. JMIR mHealth and uHealth 5(2):e7, 2017.  https://doi.org/10.2196/mhealth.6956.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hall, C. S., Fottrell, E., Wilkinson, S., and Byass, P.: Assessing the impact of mHealth interventions in low- and middle-income countries – what has been shown to work? Glob. Health Action 7(0), 2014.  https://doi.org/10.3402/gha.v7.25606
  15. 15.
    Hartholt, K. A., van Beeck, E. F., Polinder, S., van der Velde, N., van Lieshout, E. M. M., Panneman, M. J. M., van der Cammen, T. J. M., and Patka, P., Societal consequences of falls in the older population: injuries, healthcare costs, and long-term reduced quality of life. J. Trauma 71(3):748–53, 2011.  https://doi.org/10.1097/TA.0b013e3181f6f5e5.CrossRefPubMedGoogle Scholar
  16. 16.
    Kumar, S., Nilsen, W., Pavel, M., and Srivastava, M., Mobile health: revolutionizing healthcare through transdisciplinary research. Computer 1(1):28–35, 2013.CrossRefGoogle Scholar
  17. 17.
    Kuznetsov, N. A., Robins, R. K., Long, B., Jakiela, J. T., Haran, F. J., Ross, S. E., Wright, W. G., and Rhea, C. K., Validity and reliability of smartphone orientation measurement to quantify dynamic balance function. Physiol. Meas. 39(2):02NT01, 2018.CrossRefPubMedGoogle Scholar
  18. 18.
    Lewis, T. L., and Wyatt, J. C., mHealth and mobile medical apps: A framework to assess risk and promote safer use. J. Med. Internet Res. 16(9):e210, 2014.  https://doi.org/10.2196/jmir.3133.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Marinšek, M., and Slana, U., Smart phone as a standing balance assessment device. Science of Gymnastics Journal 6(3):39–47, 2014.Google Scholar
  20. 20.
    Masterson Creber, R. M., Maurer, M. S., Reading, M., Hiraldo, G., Hickey, K. T., and Iribarren, S., Review and analysis of existing mobile phone apps to support heart failure symptom monitoring and Self-Care management using the mobile application rating scale (MARS). JMIR mHealth and uHealth 4(2):e74, 2016.  https://doi.org/10.2196/mhealth.5882.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moral-Munoz, J. A., Toscano, A., Cobo, M. J., and Perez, I. J.: mBalance: An intelligent android application to assess and analyze body balance. In: New Trends in Intelligent Software Methodologies, Tools and Techniques: Proceedings of the 16th International Conference SoMeT_17, Vol. 297, p. 284. IOS Press, 2017.Google Scholar
  22. 22.
    Morera, E. P., De la Torre Díez, I., Garcia-Zapirain, B., López-Coronado, M., and Arambarri, J., Security recommendations for mHealth apps: Elaboration of a developer’s guide. J. Med. Syst. 40(6):152, 2016.  https://doi.org/10.1007/s10916-016-0513-6.CrossRefPubMedGoogle Scholar
  23. 23.
    Panjan, A., and Sarabon, N., Review of methods for the evaluation of human body balance. Sport Sci. Rev. 19(5-6):131–163, 2010.CrossRefGoogle Scholar
  24. 24.
    Park, S. D., Kim, J. S., and Kim, S. Y., Reliability and validity of the postural balance application program using the movement accelerometer principles in healthy young adults. Physical Therapy Korea 20(2):52–59, 2013.  https://doi.org/10.12674/ptk.2013.20.2.052.CrossRefGoogle Scholar
  25. 25.
    Patterson, J. A., Amick, R. Z., Pandya, P. D., Hakansson, N., and Jorgensen, M. J., Comparison of a mobile technology application with the balance error scoring system. International Journal of Athletic Therapy and Training 19(3):4–7, 2014.  https://doi.org/10.1123/ijatt.2013-0094.CrossRefGoogle Scholar
  26. 26.
    Patterson, J. A., Amick, R. Z., Thummar, T., and Rogers, M. E., Validation of measures from the smartphone sway balance application: a pilot study. International Journal of Sports Physical Therapy 9(2):135–139, 2014.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Pollock, A. S., Durward, B. R., Rowe, P. J., and Paul, J. P., What is balance? Clin. Rehabil. 14(4): 402–406, 2000.  https://doi.org/10.1191/0269215500cr342oa.CrossRefPubMedGoogle Scholar
  28. 28.
    Reyes, A., Qin, P., and Brown, C. A.: A standardized review of smartphone applications to promote balance for older adults. Disabil. Rehabil.:1–10, 2016.  https://doi.org/10.1080/09638288.2016.1250124
  29. 29.
    Roeing, K. L., Hsieh, K. L., and Sosnoff, J. J.: A systematic review of balance and fall risk assessments with mobile phone technology, 2017.  https://doi.org/10.1016/j.archger.2017.08.002
  30. 30.
    Rogers, M. E., Rogers, N. L., and Takeshima, N., Balance training in older adults. Aging Health 1(3): 475–486, 2005.  https://doi.org/10.2217/1745509X.1.3.475.CrossRefGoogle Scholar
  31. 31.
    Rohleder, P. A.: Validation of balance assessment measures of an accelerometric mobile device application versus a balance platform. Ph.D. thesis, Wichita State University, 2010Google Scholar
  32. 32.
    Santo, K., Richtering, S. S., Chalmers, J., Thiagalingam, A., Chow, C. K., and Redfern, J., Mobile phone apps to improve medication adherence: a systematic stepwise process to identify high-quality apps. JMIR mHealth and uHealth 4(4):e132, 2016.  https://doi.org/10.2196/mhealth.6742.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stoyanov, S. R., Hides, L., Kavanagh, D. J., Zelenko, O., Tjondronegoro, D., and Mani, M., Mobile app rating scale: a new tool for assessing the quality of health mobile apps. JMIR mHealth and uHealth 3(1):e27, 2015.  https://doi.org/10.2196/mhealth.3422.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    de la Torre Díez, I., Garcia-Zapirain, B., López-Coronado, M., Rodrigues, J. J., and del Pozo Vegas, C., A new mHealth app for monitoring and awareness of healthy eating: Development and user evaluation by Spanish users. J. Med. Syst. 41(7):109, 2017.  https://doi.org/10.1007/s10916-017-0753-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nursing and PhysiotherapyUniversity of CádizCádizSpain
  2. 2.Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA)University of CádizCádizSpain
  3. 3.Department of PhysiotherapyUniversity of GranadaGranadaSpain
  4. 4.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  5. 5.Department of Computer Science and EngineeringUniversity of CádizCádizSpain

Personalised recommendations