Optical Illusions and Spatial Disorientation in Aviation Pilots

  • Miguel Ángel Sánchez-Tena
  • Cristina Alvarez-Peregrina
  • Mª Carolina Valbuena-Iglesias
  • Pablo Ruisoto Palomera
Image & Signal Processing
Part of the following topical collections:
  1. Emergent Visualization Systems in Biomedical Sciences (TEEM 2017)


Optical illusions are involved in the perception of false or erroneous images which might involve disorientation. They occur by a discordance by the peripheral systems about the information captured and generally, resulting in pilots failure to recognize key signals. The aim of this study is to review the state of the art of spatial disorientation and optical illusions in aviation pilots. This kind of disorientation has important practical consequences, because a remarkable percentage of plane accidents are related to pilot’s optical illusions. An exhaustive review using pubmed and semantic scholar databases was conducted to find out the most frequent optical illusions in aviation pilots. A total of 45 full text articles published English or Spanish were reviewed. To our knowledge, this is the first study to review exhaustively and describe the main factors involved in spatial disorientation and optical illusions affecting aviation pilots. Mainly, contextual factors: width of landing track lights, nocturnal operations or low visibility, inclination of the landing track, decline of the ground, size of habitual references, low level approach on the water, black hole, sky/terrain confusion, distortion by climatic factors, autokinesis or autocinetics, optional investment illusion, illusions by vection, false horizon, rain on the windshield, misalignment in the approach, vibrations, somatogravic illusion, coriolis illusion and “G” forces. In a lesser extent, human factors and pathologies of the visual systems involved in spatial disorientation and associated optical illusions affecting aviation pilots are also described. Discussion. Practical implications are further discussed.


Optical illusions Aviation pilots Disorientation Psychophysiology 


Compliance with Ethical Standards

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Cunliffe Checura, C., Conceptos básicos de fisiología de la aviación. Dissertation, Centro de Medicina Aeroespacial, Chile.Google Scholar
  2. 2.
    Paillard, A. C., Quarck, G., and Denise, P., Sensorial countermeasures for vestibular spatial disorientation. Aviat. Space Environ. Med. 85(5):563–567, 2014.CrossRefPubMedGoogle Scholar
  3. 3.
    Warren, R., and Owen, D. H., Functional optical invariants: a new methodology for aviation research. Aviat. Space Environ. Med. 53(10):977–983, 1982.PubMedGoogle Scholar
  4. 4.
    Cheung, B., Spatial disorientation: more than just illusion. Aviat. Space Environ. Med. 84(11):1211–1204, 2013.CrossRefPubMedGoogle Scholar
  5. 5.
    Stott, J. R. R., Orientation and disorientation in aviation. Extreme Physiol. Med. 2(1):2, 2013.CrossRefGoogle Scholar
  6. 6.
    Cantón Romero, J. J., Desorientación espacial. Accessed 15 Jan 2018, 2012.
  7. 7.
    Doughtery, J. D., Review of aviation safety measures which have application to aviation accident prevention. Aviat. Space Environ. Med. 46(1):82–85, 1975.PubMedGoogle Scholar
  8. 8.
    Sociedad Española de Medicina Aeroespacial, Desorientación espacial. Madrid Accessed 15 Jan 2018, 2011.
  9. 9.
    Wang, X. C., Shi, Z. H., Bian, K., Zhang, L., Xue, J. H., Yang, G. Q., Ge, X. S., and Zhang, Z. M., The comparison of sensitivity of motion sickness between retinal degeneration fast mice and normal mice. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 200(4):327–332, 2014.CrossRefPubMedGoogle Scholar
  10. 10.
    Informe del seminario OACI/OMM, Dissertation. Organización de Aviación Civil Internacional (OACI). Accessed 15 Jan 2018, 2001.Google Scholar
  11. 11.
    Tribukait, A., and Eiken, O., Instrument failure, stress, and spatial disorientation leading to a fatal crash with a large aircraft. Aerosp. Med. Hum. Perform. 88(11):1043–1048, 2017. Scholar
  12. 12.
    Rollin Stott, J. R., Orientation and disorientation in aviation. Extreme Physiol. Med. 2:2, 2013.CrossRefGoogle Scholar
  13. 13.
    Rodríguez Villa, J. L., Servicio médico Iberia. Líneas Aéreas de España. Dissertation.Google Scholar
  14. 14.
    Randallw, G., Visual spatial disorientation: revisiting the black hole illusion. Aviat. Space Environ. Med. 78(8):801–808, 2007.Google Scholar
  15. 15.
    Ilusiones sensoriales visuales. Accessed 15 Jan 2018.
  16. 16.
    Entzinger, J. O., and Suzuki, S., Visual cues in manual landing of airplanes. ICAS 2008 International Congress of Aeronautical Sciences, 2008.Google Scholar
  17. 17.
    Gibb, R., Schvaneveldt, R., and Gray, R., Visual misperception in aviation: glide path performance in a black hole environment. Hum. Factors Aug. 50(4):699–711, 2008.CrossRefGoogle Scholar
  18. 18.
    Jones, D. G., and Endsley, M. R., Sources of situation awareness errors in aviation. Aviat. Space Environ. Med. 67(6):507–512, 1996.PubMedGoogle Scholar
  19. 19.
    Stout, R. J., Salas, E., and Kraiger, K., The role of trainee knowledge structures in aviation team environments. Int. J. Aviat. Psychol. 7(3):235–250, 1997.CrossRefPubMedGoogle Scholar
  20. 20.
    Asociación Pasión por Volar, Medicina aeronáutica-ilusiones sensoriales. Accessed 15 Jan 2018, 2014.
  21. 21.
    Ungs, T. J., The occurrence of the vection illusion among helicopter pilots while flying over water (1989). Aviat. Space Environ. Med. 60(11):1099–1101, 2018.Google Scholar
  22. 22.
    Zhdan’ko, I. M., Chulaevskiĭ, A. O., and Kovalenko, P. A., Visual illusions and moving horizon. Voen. Med. Zh. 333(9):52–62, 2012.PubMedGoogle Scholar
  23. 23.
    Comisión de Investigación Accidentes e Incidentes de Aviación Civil (CIAIAC), Informe técnico IN-044/2013. Ministerio de Fomento: España, 2013.Google Scholar
  24. 24.
    Tokumaru, O., Kaida, K., Ashida, H., Mizumoto, C., and Tatsuno, J., Visual influence on the magnitude of somatogravic illusion evoked on advanced spatial disorientation demonstrator. Aviat. Space Environ. Med. 69(2):111–116, 1998.PubMedGoogle Scholar
  25. 25.
    Horng, C. T., Liu, C. C., Kuo, D. I., Shieh, P. C., Wu, Y. C., Chen, J. T., and Tsai, M. L., Changes in visual function during the Coriolis illusion. Aviat. Space Environ. Med. 80(4):360–363, 2009.CrossRefPubMedGoogle Scholar
  26. 26.
    Alonso Rodríguez, C., Medina Font, J., and Puente Espada, B., Sanid. Mil. 68(3):157–162, 2012.CrossRefGoogle Scholar
  27. 27.
    Crowley, J. S., Human factors of night vision devices. Dissertation Walter Reed Army Institute of Research Washington, DC, 1991).Google Scholar
  28. 28.
    Helmreich, R., Managing human error in aviation. Sci. Am. 276(5):62–67, 1997.CrossRefPubMedGoogle Scholar
  29. 29.
    Amézcua Pacheco, O., Factores humanos en aviación. Medicina aeronautica: conceptos generales. Accessed 15 Jan 2018, 2013.Google Scholar
  30. 30.
    Slungaard, E., McLeod, J., Green, N. D. C., Kiran, A., Newham, D. J., and Harridge, S. D. R., Incidence of G-induced loss of consciousness and almost loss of consciousness in the royal air force. Aerosp. Med. Hum. Perform. 88(6):550–555, 2017. Scholar
  31. 31.
    González, A., and Ríos, F., Efectos de las aceleraciones positivas en el organismo humano. Med. Aero. Amb. 3(5):222–231, 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.European University of MadridMadridSpain
  2. 2.University of SalamancaSalamancaSpain

Personalised recommendations