Journal of Medical Systems

, 41:135 | Cite as

Embodied Conversational Agents for the Detection and Prevention of Suicidal Behaviour: Current Applications and Open Challenges

  • Juan Martínez-MirandaEmail author
Patient Facing Systems
Part of the following topical collections:
  1. Patient Facing Systems


Embodied conversational agents (ECAs) are advanced computational interactive interfaces designed with the aim to engage users in the continuous and long-term use of a background application. The advantages and benefits of these agents have been exploited in several e-health systems. One of the medical domains where ECAs are recently applied is to support the detection of symptoms, prevention and treatment of mental health disorders. As ECAs based applications are increasingly used in clinical psychology, and due that one fatal consequence of mental health problems is the commitment of suicide, it is necessary to analyse how current ECAs in this clinical domain support the early detection and prevention of risk situations associated with suicidality. The present work provides and overview of the main features implemented in the ECAs to detect and prevent suicidal behaviours through two scenarios: ECAs acting as virtual counsellors to offer immediate help to individuals in risk; and ECAs acting as virtual patients for learning/training in the identification of suicide behaviours. A literature review was performed to identify relevant studies in this domain during the last decade, describing the main characteristics of the implemented ECAs and how they have been evaluated. A total of six studies were included in the review fulfilling the defined search criteria. Most of the experimental studies indicate promising results, though these types of ECAs are not yet commonly used in routine practice. The identification of some open challenges for the further development of ECAs within this domain is also discussed.


Suicide prevention Embodied conversational agents Mental healthcare Literature review 



This work has been funded by the “Fondo Sectorial de Investigación en Salud y Seguridad Social – FOSISS/CONACyT” under the research project 2016-1-273163 “Desarrollo de nuevas tecnologías y su integración al sector salud como ayuda a una estrategia integral de prevención del suicidio”. The author also acknowledges the “Cátedras CONACyT” program funded by the Mexican National Research Council (CONACyT).

Compliance with Ethical Standards


This study was funded by the Mexican National Research Council (CONACyT grant number 2016–1-273,163).

Conflict of Interest

The author declares that he has not conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    World Health Organization (2017) World Health Statistics 2017 – Monitoring Health for the SDGs. Accessed 29 May 2017
  2. 2.
    Robinson, J., Cox, G., Malone, A., Williamson, M., Baldwin, G., Fletcher, K., and O’Brien, M., A Systematic Review of School-Based Interventions Aimed at Preventing, Treating, and Responding to Suicide- Related Behavior in Young People. Crisis. 34:164–182, 2013. doi: 10.1027/0227-5910/a000168.CrossRefPubMedGoogle Scholar
  3. 3.
    Milner, A., Page, K., Spencer-Thomas, S., and LaMontagne, A.D., Workplace suicide prevention: a systematic review of published and unpublished activities. Health Promotion International. 30(1):29–37, 2015. doi: 10.1093/heapro/dau085.CrossRefPubMedGoogle Scholar
  4. 4.
    Witt, K., Milner, A., Allisey, A., Davenport, L., and LaMontagne, A.D., Effectiveness of suicide prevention programs for emergency and protective services employees: A systematic review and meta-analysis. American Journal of Industrial Medicine. 60(4):394–407, 2017. doi: 10.1002/ajim.22676.CrossRefPubMedGoogle Scholar
  5. 5.
    Bagley, S.C., Munjas, B., and Shekelle, P., A Systematic Review of Suicide Prevention Programs for Military or Veterans. Suicide and Life-Threatening Behavior. 40(3):257–265, 2010. doi: 10.1521/suli.2010.40.3.257.CrossRefPubMedGoogle Scholar
  6. 6.
    Perry, Y., Werner-Seidler, A., Calear, A.L., and Christensen, H., Web-Based and Mobile Suicide Prevention Interventions for Young People: A Systematic Review. Journal of the Canadian Academy of Child and Adolescent Psychiatry. 25(2):73–79, 2016.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Robinson, J., Hetrick, S., Cox, G., Bendall, S., Yuen, H.P., Yung, A., and Pirkis, J., Can an Internet-based intervention reduce suicidal ideation, depression and hopelessness among secondary school students: results from a pilot study. Early Intervention in Psychiatry. 10(1):28–35, 2016. doi: 10.1111/eip.12137.CrossRefPubMedGoogle Scholar
  8. 8.
    Luxton, D.D., June, J.D., and Chalker, S.A., Mobile Health Technologies for Suicide Prevention: Feature Review and Recommendations for Use in Clinical Care. Current Treatment Options in Psychiatry. 2(4):349–362, 2015. doi: 10.1007/s40501-015-0057-2.CrossRefGoogle Scholar
  9. 9.
    Fleming, T.M., Bavin, L., Stasiak, K., Hermansson-Webb, E., Merry, S.N., Cheek, C., Lucassen, M., Lau, H.M., Pollmuller, B., and Hetrick, S., Serious Games and Gamification for Mental Health: Current Status and Promising Directions. Frontiers in Psychiatry. 7:215, 2017. doi: 10.3389/fpsyt.2016.00215.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Savage J M (2015) Usability Assessment of a Suicide Intervention-Prevention Mini-Game. Proceedings of International Conference on Human-Computer Interaction (HCI 2015): 703–708. doi:  10.1007/978-3-319-21383-5_119
  11. 11.
    Wooldridge, M., and Jennings, N.R., Intelligent agents: theory and practice. The Knowledge Engineering Review. 10(2):115–152, 1995.CrossRefGoogle Scholar
  12. 12.
    Isern, D., and Moreno, A., A Systematic Literature Review of Agents Applied in Healthcare. Journal of Medical Systems. 40(2):43, 2016. doi: 10.1007/s10916-015-0376-2.CrossRefPubMedGoogle Scholar
  13. 13.
    Core, M., Traum, D., Lane, H.C., Swartout, W., Gratch, J., van Lent, M., and Marsella, S., Teaching Negotiation Skills through Practice and Reflection with Virtual Humans. Simulation. 82(11):685–701, 2006.CrossRefGoogle Scholar
  14. 14.
    Martínez-Miranda J, Jung B, Payr S, Petta P (2008) The Intermediary Agent’s Brain: Supporting Learning to Collaborate at the Inter-Personal Level. Proceedings of the 7th Conference on Autonomous Agents and Multiagent Systems (AAMAS'08) 3: 1277–1280Google Scholar
  15. 15.
    Gebhard P, Schröder M, Charfuelan M, Endres C, Kipp M, Pammi S, Rumpler M, Türk O (2008) IDEAS4Games: Building Expressive Virtual Characters for Computer Games. Proceedings of the 8th International Conference on Intelligent Virtual Agents (IVA 2008): 426–440.Google Scholar
  16. 16.
    Mateas M, Stern A (2003) Façade: An experiment in building a fully-realized interactive drama. In Game Developers Conference (GDC’03).Google Scholar
  17. 17.
    Zhang Z, Bickmore T W, Mainello K, Mueller M, Foley M, Jenkins L, Edwards R A (2014) Maintaining Continuity in Longitudinal, Multi-method Health Interventions Using Virtual Agents: The Case of Breastfeeding Promotion. Proceedings of Intelligent Virtual Agents (IVA 2014): 504–513. doi:  10.1007/978-3-319-09767-1_61
  18. 18.
    Micoulaud-Franchi J A, Sagaspe P, de Sevin E, Bioulac S, Sauteraud A, Philip P (2016) Acceptability of Embodied Conversational Agent in a Health Care Context. Proceedings of Intelligent Virtual Agents (IVA 2016): 416–419. doi:  10.1007/978-3-319-47665-0_45
  19. 19.
    Bickmore, T.W., Utami, D., Matsuyama, R., and Paasche-Orlow, M., Improving Access to Online Health Information With Conversational Agents: A Randomized Controlled Experiment. Journal of Medical Internet Research. 18(1):e1, 2016. doi: 10.2196/jmir.5239.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lucas, G.M., Gratch, J., King, A., and Morency, L.P., It’s only a computer: Virtual humans increase willingness to disclose. Computers in Human Behavior. 37:94–100, 2014. doi: 10.1016/j.chb.2014.04.043.CrossRefGoogle Scholar
  21. 21.
    Bickmore, T.W., and Gruber, A., Relational agents in clinical psychiatry. Harvard review of psychiatry. 18(2):119–130, 2010. doi: 10.3109/10673221003707538.CrossRefPubMedGoogle Scholar
  22. 22.
    Lisetti C (2008) Embodied conversational agents for psychotherapy. Proceedings of CHI 2008 conference workshop on technology in mental health 1–12Google Scholar
  23. 23.
    Ring L, Bickmore T W, Pedrelli P (2016) An Affectively Aware Virtual Therapist for Depression Counseling. Proceedings ACM SIGCHI Conference on Human Factors in Computing Systems. Accessed 29 May 2017
  24. 24.
    Kavakli, M., Li, M., and Rudra, T., Towards the Development of A Virtual Counselor to Tackle Students' Exam Stress. Journal of Integrated Design & Process Science. 16(1):5–26, 2012. doi: 10.3233/jid-2012-0004.Google Scholar
  25. 25.
    Rizzo, A.A., Lange, B., Buckwalter, J.G., Forbell, E., Kim, J., Sagae, K., Williams, J., Rothbaum, B.O., Difede, J., Reger, G., Parsons, T., and Kenny, P., An intelligent virtual human system for providing healthcare information and support. Studies in health technology and informatics. 163:503–509, 2011.PubMedGoogle Scholar
  26. 26.
    Provoost, S., Lau, H.M., Ruwaard, J., and Riper, H., Embodied Conversational Agents in Clinical Psychology: A Scoping Review. Journal of Medical Internet Research. 19(5):e151, 2017. doi: 10.2196/jmir.6553.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kroenke, K., Spitzer, R.L., and Williams, J.B.W., The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine. 16(9):606–613, 2001. doi: 10.1046/j.1525-1497.2001.016009606.x.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Perry, Y., Calear, A.L., Mackinnon, A., Batterham, P.J., Licinio, J., King, C., Thomsen, N., Scott, J., Donker, T., Merry, S., Fleming, T., Stasiak, K., Werner-Seidler, A., and Christensen, H., Trial for the Prevention of Depression (TriPoD) in final-year secondary students: study protocol for a cluster randomised controlled trial. Trials. 16:451, 2015. doi: 10.1186/s13063-015-0929-1.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    May, A., and Klonsky, E.D., Validity of suicidality items from the Youth Risk Behavior Survey in a high school sample. Assessment. 18(3):379–381, 2001.CrossRefGoogle Scholar
  30. 30.
    Burton, C., Szentagotai, A., McKinstry, B., Matheson, C., Matu, S., Moldovan, R., Macnab, M., Farrow, E., David, D., Pagliari, C., Serrano-Blanco, A., and Wolters, M., Pilot randomised controlled trial of Help4Mood, an embodied virtual agent-based system to support treatment of depression. Journal of Telemedicine and Telecare. 22(6):348–355, 2016. doi: 10.1177/1357633X15609793.CrossRefPubMedGoogle Scholar
  31. 31.
    Martínez-Miranda J, Bresó A, García-Gómez J M (2014) Modelling two emotion regulation strategies as key features of therapeutic empathy. In: Bosse T, Broekens J, Dias J, van der Zwaan (Eds.) Emotion Modeling: Towards Pragmatic Computational Models of Affective Processes, Springer International Publishing, pp 115–133. doi:  10.1007/978-3-319-12973-0_7
  32. 32.
    Bresó, A., Martínez-Miranda, J., Fuster-García, E., and García-Gómez, J.M., A novel approach to improve the planning of adaptive and interactive sessions for the treatment of Major Depression. International Journal of Human-Computer Studies. 87:80–91, 2016. doi: 10.1016/j.ijhcs.2015.11.003.CrossRefGoogle Scholar
  33. 33.
    Bresó, A., Martínez-Miranda, J., Botella, C., Baños, R.M., and García-Gómez, J.M., Usability and acceptability assessment of an empathic virtual agent to prevent major depression. Expert Systems. 33(4):297–312, 2016. doi: 10.1111/exsy.12151.CrossRefGoogle Scholar
  34. 34.
    Scherer, K., Schorr, A., and Johnstone, T., Appraisal Processes in Emotion: Theory, Methods. Oxford University Press, Research, 2001.Google Scholar
  35. 35.
    Brooke, J., SUS: A quick and dirty usability scale. In: Jordan, P.W., Thomas, B., Weerdmeester, B.A., and McClelland, I.L. (Eds.), Usability Evaluation in Industry. Taylor & Francis, London, pp. 189–194, 1996.Google Scholar
  36. 36.
    Foster, A., Chaudhary, N., Murphy, J., Lok, B., Waller, J., and Buckley, P.F., The Use of Simulation to Teach Suicide Risk Assessment to Health Profession Trainees – Rationale, Methodology, and a Proof of Concept Demonstration with a Virtual Patient. Academic Psychiatry. 39(6):620–629, 2015. doi: 10.1007/s40596-014-0185-9.CrossRefPubMedGoogle Scholar
  37. 37.
    van Merriënboer, J.J., and Sweller, J., Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review. 17:147–177, 2005.CrossRefGoogle Scholar
  38. 38.
    Miller, W.R., Motivational interviewing with problem drinkers. Behavioural Psychotherapy. 11:147–172, 1983.CrossRefGoogle Scholar
  39. 39.
    Albright, G., Adam, C., Serri, D., Bleeker, S., and Goldman, R., Harnessing the power of conversations with virtual humans to change health behaviors. mHealth. 2(44):1–13, 2016. doi: 10.21037/mhealth.2016.11.02.Google Scholar
  40. 40.
    Bartgis, J., and Albright, G., Online role-play simulations with emotionally responsive avatars for the early detection of native youth psychological distress, including depression and suicidal ideation. American Indian and Alaska native mental health research. 23(2):1–27, 2016. doi: 10.5820/aian.2302.2016.1.CrossRefGoogle Scholar
  41. 41.
    Silverman, B.G., Holmes, J., Kimmel, S., Branas, C., Ivins, D., Weaver, R., and Chen, Y., Modeling Emotion and Behavior in Animated Personas to Facilitate Human Behavior Change: The Case of the HEART-SENSE Game. Health Care Management Science. 4(3):213–228, 2001. doi: 10.1023/A:1011448916375.CrossRefPubMedGoogle Scholar
  42. 42.
    Bickmore, T., Gruber, A., and Picard, R., Establishing the Computer-Patient Working Alliance in Automated Health Behavior Change Interventions. Patient Education and Counseling. 59(1):21–30, 2005.CrossRefPubMedGoogle Scholar
  43. 43.
    Pontier M, Siddiqui G A (2008) Virtual Therapist That Responds Empathically to Your Answers. Proceedings of the 8th International Conference on Intelligent Virtual Agents (IVA 2008): 417–425.Google Scholar
  44. 44.
    Tartaro A, Cassell J (2008) Playing with Virtual Peers: Bootstrapping Contingent Discourse in Children with Autism. Proceedings of International Conference of the Learning Sciences (ICLS), Utrecht, Netherlands.Google Scholar
  45. 45.
    Rizzo, A.A., Lange, B., Buckwalter, J.G., Forbell, E., Kim, J., Sagae, K., Williams, J., Rothbaum, B.O., Difede, J., Reger, G., Parsons, T., and Kenny, P., An intelligent virtual human system for providing healthcare information and support. Studies in health technology and informatics. doi. 163:503–509, 2011.Google Scholar
  46. 46.
    Li M, Rudra T, Kavakli M (2012) E-counsellor: an avatar for student exam stress management. Proceedings of the 3rd International Conference on Information Management and Evaluation ICIME’12: 185–193Google Scholar
  47. 47.
    DeVault D, Artstein R, Benn G, Dey T, Fast E, Gainer A, Georgila K, Gratch J, Hartholt A, Lhommet M, Lucas G, Marsella S, Morbini F, Nazarian A, Scherer S, Stratou G, Suri A, Traum D, Wood R, Xu Y, Rizzo A, Morency L P (2014) SimSensei Kiosk: A Virtual Human Interviewer for Healthcare Decision Support. Proceedings of 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014): 1061–1068.Google Scholar
  48. 48.
    Yellowlees, P.M., Holloway, K.M., and Parish, M.B., Therapy in Virtual Environments – Clinical and Ethical Issues. Telemedicine and e-Health. 18(7):558–564, 2012. doi: 10.3233/978-1-60750-706-2-50310.1089/tmj.2011.0195.CrossRefPubMedGoogle Scholar
  49. 49.
    Scherer S, Pestian J, Morency L P (2013) Investigating the speech characteristics of suicidal adolescents. Proceedings of 2013 I.E. International Conference on Acoustics, Speech and Signal Processing (ICASSP): 709–713. doi:  10.1109/ICASSP.2013.6637740
  50. 50.
    Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., and Quatieri, T.J., A review of depression and suicide risk assessment using speech analysis. Speech Communication. 71(C):10–49, 2015. doi: 10.1016/j.specom.2015.03.004.CrossRefGoogle Scholar
  51. 51.
    Zhang L, Huang X, Liu T, Li A, Chen Z, Zhu T (2015) Using linguistic features to estimate suicide probability of Chinese microblog users. In: Zu Q, Hu B, Gu N, Seng S (Eds.) Human Centered Computing. HCC 2014. Lecture Notes in Computer Science (8944): 549–559, Springer. doi:  10.1007/978-3-319-15554-8_45
  52. 52.
    O’Dea, B., Wan, S., Batterham, P.J., Calear, A.L., Paris, C., and Christensen, H., Detecting suicidality on Twitter. Internet Interventions. 2(2):183–188, 2015. doi: 10.1016/j.invent.2015.03.005.CrossRefGoogle Scholar
  53. 53.
    Martínez-Miranda J, Alvarado M (2017) Modelling Personality-based Individual Differences in the Use of Emotion Regulation Strategies. In Mouhoub M, Langlais P (Eds.) Advances in Artificial Intelligence, Lecture Notes in Computer Science, 10233: 361–372, Springer. doi:  10.1007/978-3-319-57351-9_41

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.CONACYT – Centro de Investigación Científica y de Educación Superior de EnsenadaUnidad de Transferencia TecnológicaTepicMexico

Personalised recommendations