Advertisement

Tri-Scan: A Three Stage Color Enhancement Tool for Endoscopic Images

  • Mohammad S. Imtiaz
  • Shahed K. Mohammed
  • Farah Deeba
  • Khan A. WahidEmail author
Systems-Level Quality Improvement
  • 271 Downloads
Part of the following topical collections:
  1. Systems-Level Quality Improvement

Abstract

Modern endoscopes play a significant role in diagnosing various gastrointestinal (GI) tract related diseases where the visual quality of endoscopic images helps improving the diagnosis. This article presents an image enhancement method for color endoscopic images that consists of three stages, and hence termed as “Tri-scan” enhancement: (1) tissue and surface enhancement: a modified linear unsharp masking is used to sharpen the surface and edges of tissue and vascular characteristics; (2) mucosa layer enhancement: an adaptive sigmoid function is employed on the R plane of the image to highlight micro-vessels of the superficial layers of the mucosa and submucosa; and (3) color tone enhancement: the pixels are uniformly distributed to create an enhanced color effect to highlight the subtle micro-vessels, mucosa and tissue characteristics. The proposed method is used on a large data set of low contrast color white light images (WLI). The results are compared with three existing enhancement techniques: Narrow Band Imaging (NBI), Fuji Intelligent Color Enhancement (FICE) and i-scan Technology. The focus value and color enhancement factor show that the enhancement level achieved in the processed images is higher compared to NBI, FICE and i-scan images.

Keywords

Color image enhancement Unsharp masking Adaptive sigmoid function Wireless capsule endoscopy 

Notes

Acknowledgements

The authors would like to acknowledge Grand Challenges Canada (GCC) Star in Global Health, Natural Science and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), and Western Economic Diversification Canada (WED) for their support to this research work. The authors also acknowledge the gastroenterologists who took part in the survey. They are (in no particular order): Dr. Smita Halder from Division of Gastroenterology, Department of Medicine, McMaster University, Dr. Mario Vassallo from Gastroenterologist Department, Mater Dei Hospital, and Dr. Mohammad Amzad Hossain from College of Medicine, University of Saskatchewan.

References

  1. 1.
    Li, B., and Meng, M.Q.-H., Wireless capsule endoscopy images enhancement via adaptive contrast diffusion. J. Vis. Commun. Image Represent. 23(1):222–228, Jan. 2012.CrossRefGoogle Scholar
  2. 2.
    Brownsey, A., and Michalek, J., Wireless capsule endoscopy, Am. Soc. Gastrointest. Endosc., 2010.Google Scholar
  3. 3.
    Brownsey, A., and Michalek, J., High definition scopes, narrow band imaging, chromoendoscopy, Am. Soc. Gastrointest. Endosc., 2011.Google Scholar
  4. 4.
    Yousefi-Banaem, H., Rabbani, H., and Adibi, P., Barrett's mucosa segmentation in endoscopic images using a hybrid method: Spatial fuzzy c-mean and level set. J. Med. Signals Sensors. 6(4):231, 2016.Google Scholar
  5. 5.
    Karkanis, S.A., et al., Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Trans. Inf. Technol. Biomed. 7(3):141–152, 2003.CrossRefPubMedGoogle Scholar
  6. 6.
    Deeba, F., et al., Efficacy evaluation of save for the diagnosis of superficial neoplastic lesion. IEEE Journal of Translational Engineering in Health and Medicine (2017). doi: 10.1109/JTEHM.2017.2691339.
  7. 7.
    Sainju, S., Bui, F., and Wahid, K., Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. J. Med. Syst. Springer, 38(4):25, 2014.Google Scholar
  8. 8.
    Machida, H., Sano, Y., Hamamoto, Y., Muto, M., Kozu, T., Tajiri, H., and Yoshida, S., Narrow-band imaging in the diagnosis of colorectal mucosal lesions: A pilot study. Endoscopy. 36:1094–1098, 2004.CrossRefPubMedGoogle Scholar
  9. 9.
    Schmitz-valckenberg, S., Holz, F.G., Bird, A.C., and Spaide, R.F., Fundus autofluorescence imaging: Review and perspectives. Retina. 28(3):385–409, 2008.CrossRefPubMedGoogle Scholar
  10. 10.
    Kaltenbach, T., Sano, Y., Friedland, S., and Soetikno, R., American gastroenterological association (AGA) institute technology assessment on image-enhanced endoscopy. Gastroenterology. 134:327–340, 2008.CrossRefPubMedGoogle Scholar
  11. 11.
    Kodashima, S., and Fujishiro, M., Novel image-enhanced endoscopy with i-scan technology. World J. Gastroenterol: WJG. 16(9):1043, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    PENTAX Medical i-scan Mini- Atlas for Gastroenterology. 2015 [online]. Available: http://www.pentaxmedical.de/media/c770769bdd45ff6481dcd60381870872/PENTAX_i-scan_Mini-Atlas.pdf
  13. 13.
    Nishimura, J., Nishikawa, J., Nakamura, M., Goto, A., Hamabe, K., Hashimoto, S., and Sakaida, I., Efficacy of i-Scan imaging for the detection and diagnosis of early gastric carcinomas. Gastroenterol. Res. Pract., 2014. doi: 10.1155/2014/819395.
  14. 14.
    Hoffman, A., Loth, L., Rey, J.W., Rahman, F., Goetz, M., Hansen, T., and Kiesslich, R., High definition plus colonoscopy combined with i-scan tone enhancement vs. high definition colonoscopy for colorectal neoplasia: A randomized trial. Dig. Liver Dis. 46(11):991–996, 2014.CrossRefPubMedGoogle Scholar
  15. 15.
    Pohl, J., May, A., et al., Computed virtual chromoendoscopy: A new tool for enhancing tissue surface structures. Thieme E-Journals - Endoscopy. 39(1):80–83, Jan. 2007.Google Scholar
  16. 16.
    Chiu, H., Chang, C., et al., A prospective comparative study of narrow-band imaging, chromoendoscopy, and conventional colonoscopy in the diagnosis of colorectal neoplasia. GUT Int. J. Gastroenterol. Hematol. 56(3):373, 2007.Google Scholar
  17. 17.
    Curvers, W., et al., Chromoendoscopy and narrow-band imaging compared with high-resolution magnification endoscopy in Barrett’s esophagus. Elsevier - Gastroenterology. 134(3):670–679, 2008.CrossRefGoogle Scholar
  18. 18.
    Chung, S.J., Kim, D., et al., Comparison of detection and miss rates of narrow band imaging, flexible spectral imaging chromoendoscopy and white light at screening colonoscopy: A randomised controlled back-to-back study. Gut. 63:785–791, 2014.CrossRefPubMedGoogle Scholar
  19. 19.
    Okuhata, H., Nakamura, H., Hara, S., Tsutsui, H. and Onoye T., Application of the real-time Retinex image enhancement for endoscopic images. Proc. Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE, 3407–3410, 2013. doi: 10.1109/EMBC.2013.6610273.
  20. 20.
    Gopi, V.P., and Palanisamy, P., Capsule endoscopic image denoising based on double density dual tree complex wavelet transform. Int. J. Imag. Robot. 9:48–60, 2013.Google Scholar
  21. 21.
    Agaian, S.S., Silver, B., and Panetta, K.A., Transform coefficient histogram-based image enhancement algorithms using contrast entropy. in IEEE Trans. Image Process. 16(3):741–758, March 2007.CrossRefGoogle Scholar
  22. 22.
    Amini, Z., and Rabbani, H., Statistical modeling of retinal optical coherence tomography. in IEEE Trans. Med. Imaging. 35(6):1544–1554, June 2016.CrossRefGoogle Scholar
  23. 23.
    Imai, F. H. and Berns, R. S., Spectral estimation using trichromatic digital cameras. Proceedings of the International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives, Chiba University Chiba, Japan, 42:1–8, 1999.Google Scholar
  24. 24.
    Luft, T., Colditz, C. and Deussen, O., Image enhancement by unsharp masking the depth buffer. ACM, 2006.Google Scholar
  25. 25.
    Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., and Gualtieri, A., Recent advances in techniques for hyperspectralimage processing. Remote Sens. Environ. 113:S110–S122, 2009.CrossRefGoogle Scholar
  26. 26.
    Hassan, N., and Akamatsu, N., A new approach for contrast enhancement using sigmoid function. The Int. J. of Arab Jour. 1(2):221–225, 2004.Google Scholar
  27. 27.
    Saruchi, Adaptive sigmoid function to enhance low contrast images. Int. J. of Comp. App. 55(4):45–49, 2012.Google Scholar
  28. 28.
    Gastrolab – the gastrointestinal site. 1996 [online]. Available: http://www.gastrolab.net/index.htm.
  29. 29.
    Atlas of Gastrointestinal Endoscopy. 1996 [online]. Available: http://www.endoatlas.com/index.html.
  30. 30.
    FICE Atlas of Spectral Endoscopic images. 2008 [online]. Available: http://www.fujinonla.com/inc/class/descargar.php?url=/archivos/catalogos/fice-atlas-esp.pdf.
  31. 31.
    Pizer, S.M., et al., Adaptive histogram equalization and its variations. Comput. Vision, Graphics, Image Process. 39:355–368, 1987.CrossRefGoogle Scholar
  32. 32.
    Wang, Z., and Bovik, A.C., A universal image quality index. Signal Processing Lett., IEEE. 9:81–84, 2002.CrossRefGoogle Scholar
  33. 33.
    Srivastava, R., Gupta, J.R.P., Parthasarthy, H., and Srivastava, S., PDF based unsharp masking, crispening and high boost filtering of digital images. Commun. Comput. Informat. Sci. 40:8–13, 2009.CrossRefGoogle Scholar
  34. 34.
    Polesel, A., Ramponi, G., and Mathews, V.J., Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 9:505–510, 2000.CrossRefPubMedGoogle Scholar
  35. 35.
    Xu, X., Wang, Y., Tang, J., Zhang, X., Liu, X., et al. Sensors. 11(9):8281–8294, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shen, C. H., Chen, H.H., Robust focus measure for low-contrast images, Consumer Electronics, 2006. ICCE'06. 2006 Digest of Technical Papers. International Conference on, IEEE, pp. 69–70, 2006.Google Scholar
  37. 37.
    Balas, B., Nakano, L., and Rosenholtz, R., A summary-statistic representation in peripheral vision explains visual crowding. J. Vis. 9(12):1–18, Nov. 2009.CrossRefGoogle Scholar
  38. 38.
    Pezzoli, A., et al., Interobserver agreement in describing video capsule endoscopy findings: A multicentre prospective study. Dig. Liver Dis. 43:126–131, 2011.CrossRefPubMedGoogle Scholar
  39. 39.
    Fawcett, T., An introduction to ROC analysis. Pattern Recogn. Lett. 27:861–874, 2006.CrossRefGoogle Scholar
  40. 40.
    Susstrunk, S. E., and Winkler, S., Color image quality on the internet. Intern. Soc. Opt. Photn., pp. 118–131, 2003.Google Scholar
  41. 41.
    Iakovidis, D.K., and Koulaouzidis, A., Software for enhanced video capsule endoscopy: Challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12(3):172–186, 2015.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mohammad S. Imtiaz
    • 1
  • Shahed K. Mohammed
    • 1
  • Farah Deeba
    • 1
  • Khan A. Wahid
    • 1
    Email author
  1. 1.Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations