A De-Identification Pipeline for Ultrasound Medical Images in DICOM Format

  • Eriksson Monteiro
  • Carlos Costa
  • José Luís Oliveira
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement


Clinical data sharing between healthcare institutions, and between practitioners is often hindered by privacy protection requirements. This problem is critical in collaborative scenarios where data sharing is fundamental for establishing a workflow among parties. The anonymization of patient information burned in DICOM images requires elaborate processes somewhat more complex than simple de-identification of textual information. Usually, before sharing, there is a need for manual removal of specific areas containing sensitive information in the images. In this paper, we present a pipeline for ultrasound medical image de-identification, provided as a free anonymization REST service for medical image applications, and a Software-as-a-Service to streamline automatic de-identification of medical images, which is freely available for end-users. The proposed approach applies image processing functions and machine-learning models to bring about an automatic system to anonymize medical images. To perform character recognition, we evaluated several machine-learning models, being Convolutional Neural Networks (CNN) selected as the best approach. For accessing the system quality, 500 processed images were manually inspected showing an anonymization rate of 89.2%. The tool can be accessed at and it is available with the most recent version of Google Chrome, Mozilla Firefox and Safari. A Docker image containing the proposed service is also publicly available for the community.


Medical imaging OCR Neural networks Deep-learning De-identification 


Compliance with Ethical Standards


This work was supported by project Cloud Thinking (CENTRO-07-ST24-FEDER-002031), co-funded by QREN, “Mais Centro” program, and the EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant n° 115,372). Eriksson Monteiro is funded by Fundação para a Ciência e Tecnologia (FCT) under the grant agreement SFRH/BD/102195/2014.

Conflict of Interest

All authors declare that there are no conflicts of interest in this work.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Suinesiaputra, A., Medrano-Gracia, P., Cowan, B.R., and Young, A.A., Big heart data: Advancing health Informatics through data sharing in cardiovascular imaging. IEEE J. Biomed. Heal. Informatics. 19(4):1283–1290, 2015.CrossRefGoogle Scholar
  2. 2.
    Somolinos, R., Munoz, A., Hernando, M.E., Pascual, M., Caceres, J., Sanchez-de-Madariaga, R., Fragua, J.A., Serrano, P., and Salvador, C.H., Service for the Pseudonymization of electronic healthcare records based on ISO/EN 13606 for the secondary use of information. IEEE J. Biomed. Heal. Informatics. 19(6):2015, 1937–1944.Google Scholar
  3. 3.
    Aryanto, K.Y.E., van Kernebeek, G., Berendsen, B., Oudkerk, M., and van Ooijen, P.M.A. Image De-Identification Methods for Clinical Research in the XDS Environment. J. Med. Syst. 40(4):83, 2016.PubMedGoogle Scholar
  4. 4.
    Clunie, D., How to use DoseUtilityTM. PixelMed Publishing. Available: Accessed 26 Jul 2016.
  5. 5.
    Wu, M., Zhao, T., and Wu, C., Public health data collection and sharing using HIPAA messages. J. Med. Syst. 29(4):303–316, 2005.CrossRefPubMedGoogle Scholar
  6. 6.
    Mantos, P.L.K., and Maglogiannis, I., Sensitive Patient Data Hiding using a ROI Reversible Steganography Scheme for DICOM Images. J. Med. Syst. 40(6):156, 2016.CrossRefPubMedGoogle Scholar
  7. 7.
    Freymann, J.B., Kirby, J.S., Perry, J.H., Clunie, D.A., and Jaffe, C.C., Image data sharing for biomedical research--meeting HIPAA requirements for de-identification. J. Digit. Imaging. 25(1):14–24, 2012.CrossRefPubMedGoogle Scholar
  8. 8.
    Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W., Roth, E., Morton, S.C., and Shekelle, P.G., Systematic Review: Impact of Health Information Technology on Quality, Efficiency, and Costs of Medical Care. Ann. Intern. Med. 144(10):742, 2006.CrossRefPubMedGoogle Scholar
  9. 9.
    Huang, H. K., PACS and imaging informations: Basic principles and applications. Wiley-Blackwell, 2004.Google Scholar
  10. 10.
    Pianykh, O.S., Digital imaging and Communications in Medicine (DICOM). Springer Berlin Heidelberg, Berlin, 2012.CrossRefGoogle Scholar
  11. 11.
    Newhauser, W., Jones, T., Swerdloff, S., Newhauser, W., Cilia, M., Carver, R., Halloran, A., and Zhang, R., Anonymization of DICOM electronic medical records for radiation therapy. Comput. Biol. Med. 53:134–140, 2014.CrossRefPubMedGoogle Scholar
  12. 12.
    Shahbaz, S., Mahmood, A., and Anwar, Z., SOAD: Securing oncology EMR by anonymizing DICOM images. In: Proceedings -11th International Conference on Frontiers of Information Technology, FIT 2013, 2013, pp. 125–130.Google Scholar
  13. 13.
    Shamshuddin, S., and Matthews, H.R., Use of OsiriX in developing a digital radiology teaching library. Clinical Radiology. 69(10):e373–e380, 2014.CrossRefPubMedGoogle Scholar
  14. 14.
    Rodríguez González, D., Carpenter, T., van Hemert, J.I., and Wardlaw, J., An open source toolkit for medical imaging de-identification. Eur. Radiol. 20(8):2010, 1896–1904.Google Scholar
  15. 15.
    Huang, L.-C., Chu, H.-C., Lien, C.-Y., Hsiao, C.-H., and Kao, T., Privacy preservation and information security protection for patients’ portable electronic health records. Comput. Biol. Med. 39(9):743–750, Sep. 2009.CrossRefPubMedGoogle Scholar
  16. 16.
    Li, L. and Wang, J. Z., DDIT - A Tool for DICOM Brain Images De-Identification. In: 2011 5th International Conference on Bioinformatics and Biomedical Engineering, 2011, pp. 1–4.Google Scholar
  17. 17.
    Ye, Q., and Doermann, D., Text detection and recognition in imagery: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 37(7):1480–1500, 2015.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen, D., Odobez, J.M., and Bourlard, H., Text detection and recognition in images and video frames. Pattern Recognit. 37(3):595–608, 2004.CrossRefGoogle Scholar
  19. 19.
    Florea, F., Rogozan, A., and Bensrhair, A., Modality categorization by textual annotations interpretation in medical imaging. Med. Informatics Eur. (MIE 2005) :1270–1275, 2005.Google Scholar
  20. 20.
    Chambolle, A., An algorithm for Total variation minimization and applications. Journal of Mathematical Imaging and Vision. 20(1–2):89–97, 2004.Google Scholar
  21. 21.
    Bradski, G. and Kaehler, A., Learning OpenCV: Computer Vision with the OpenCV Library. Vol 1. 2008.Google Scholar
  22. 22.
    van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., and Yu, T., Scikit-image: Image processing in Python. Peer J. 2:e453, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Community, O., The OpenCV reference manual. October. 1–1104, 2010.Google Scholar
  24. 24.
    Tessler, F.N., Protected health information on ultrasound images: Time to end the burn. J. Ultrasound Med. 30(10):1319–1320, 2011.CrossRefPubMedGoogle Scholar
  25. 25.
    de Campos, T. E., Babu, B. R., and Varma, M., Character recognition in natural images. Proc. Int. Conf. Comput. Vis. Theory Appl. 2009.Google Scholar
  26. 26.
    Breiman, L., Random forests. Mach. Learn. 45(1):5–32, 2001.CrossRefGoogle Scholar
  27. 27.
    T. Tieleman, Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. Proc. 25th Int. Conf. Mach. Learn. 307: 7, 2008.Google Scholar
  28. 28.
    Larochelle, H., Mandel, M., Pascanu, R., and Bengio, Y., Learning algorithms for the classification Restricted Boltzmann machine. J. Mach. Learn. Res. 13:643–669, 2012.Google Scholar
  29. 29.
    Yu, H.-F., Huang, F.-L., and Lin, C.-J., Dual coordinate descent methods for logistic regression and maximum entropy models. Mach. Learn. 85(1–2):41–75, 2011.CrossRefGoogle Scholar
  30. 30.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É., Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12:2825–2830, 2012.Google Scholar
  31. 31.
    Krizhevsky A., Sutskever I., and Hinton, G. E., ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.Google Scholar
  32. 32.
    Gardner, M., and Dorling, S., Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 32(14):2627–2636, 1998.CrossRefGoogle Scholar
  33. 33.
    Bengio, Y., Learning deep architectures for AI. Found. Trends®. Mach. Learn. 2(1):1–127, 2009.CrossRefGoogle Scholar
  34. 34.
    Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O., Desjardins, G., Warde-Farley, D., Goodfellow, I., Bergeron, A., and Bengio, Y., Theano: Deep learning on GPUs with Python. J. Mach. Learn. Res. 1:1–48, 2011.Google Scholar
  35. 35.
    Levenshtein, V.I., Binary codes capable of correcting deletions. Insertions and Reversals. Sov. Phys. Dokl. 10:707, 1966.Google Scholar
  36. 36.
    BMD software, PACScenter. Available: Accessed 26 Jul 2016.
  37. 37.
    Melicio Monteiro, E. J., Costa, C., and Oliveira, J. L., A DICOM viewer based on web technology. In: 2013 I.E. 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), 2013, pp. 167–171.Google Scholar
  38. 38.
    Costa, C., Ferreira, C., Bastiao, L., Ribeiro, L., Silva, A., and Oliveira, J.L., Dicoogle-an open source peer-to-peer PACS. J. Digit. Imaging. 24(5):848–856, 2011.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University of Aveiro, DETI/IEETAAveiroPortugal

Personalised recommendations