A Literature Review on Validated Simulations of the Surgical Services

  • K. W. Soh
  • C. Walker
  • M. O’Sullivan
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement


The surgical department is a critical unit that oversees multiple surgical-based clinical pathways and works with various other units in a hospital. This department faces numerous challenges relating to variability in demand and management of resources. The aim of this article is to review the application of validated simulation models on hospital-wide surgical services. Each of these models is broadly classified by (i) simulation method and (ii) level of detail given to the management of “patient pathways” and “staff workflows”. We remark that very few studies have given attention to the management of staff workflows in their validated simulation models.


Surgical services Patient pathway Staff workflow Simulation model Validation 


Compliance with Ethical Standards

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Aringhieri, R., and Duma, D.: The optimization of a surgical clinical pathway. In: Obaidat, M. S., Ören, T., Kacprzyk, J., Filipe, J. (Eds.) Simulation and Modeling Methodologies, Technologies and Applications, pp. 313–331. Springer International Publishing (2015)Google Scholar
  2. 2.
    Atuahene, I., Tan, Z., Li, Y., Upreti, G., Mitchell, I., Atuahene, E., Acosta-Amado, R. J., Sawhney, R.: Effective surgical service staffing modeling. In: Cetinkaya, S., and Ryan, J. K. (Eds.) Proceedings of the 2017 Industrial and Systems Engineering Research Conference, pp. 2416–2426 (2015)Google Scholar
  3. 3.
    Beaulieu, I., Gendreau, M., Soriano, P.: Operating rooms scheduling under uncertainty. In: Tànfani, E., and Testi, A. (Eds.) Advanced Decision Making Methods Applied to Health Care, chapter 2, pp. 13–32. Springer, Milan (2012)Google Scholar
  4. 4.
    Beel, J., and Gipp, B.: Google scholar’s ranking algorithm: An introductory overview. In: Larsen, B., and leta, J. (Eds.) Proceedings of the 12th International Conference on Scientometrics and Informetrics, Vol. 1, pp. 230–241 (2009)Google Scholar
  5. 5.
    Bowers, J., and Mould, G., Managing uncertainty in orthopaedic trauma theatres. Eur. J. Oper. Res. 154 (3):599–608, 2004.CrossRefGoogle Scholar
  6. 6.
    Brailsford, S. C., Lattimer, V. A., Tarnaras, P., Turnbull, J. C., Emergency and on-demand health care: modelling a large complex system. J. Oper. Res. Soc. 55(1):34–42, 2004.CrossRefGoogle Scholar
  7. 7.
    Cardoen, B., and Demeulemeester, E., Capacity of clinical pathways - a strategic multi-level evaluation tool. J. Med. Syst. 32(6):443–452, 2008.CrossRefPubMedGoogle Scholar
  8. 8.
    Cardoen, B., Demeulemeester, E., Beliën, J., Operating room planning and scheduling: a literature review. Eur. J. Oper. Res. 201(3):921–932, 2010.CrossRefGoogle Scholar
  9. 9.
    Dexter, F., Macario, A., Traub, R. D., Optimal sequencing of urgent surgical cases. J. Clin. Monit. Comput. 15(3):153–162, 1999.CrossRefPubMedGoogle Scholar
  10. 10.
    Elbattah, M., and Molloy, O.: Towards improving modeling and simulation of clinical pathways: Lessons learned and future insights. In: Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 508–514 (2015)Google Scholar
  11. 11.
    Ferreira, R. B., Coelli, F. C., Pereira, W. C., Almeida, R. M., Optimizing patient flow in a large hospital surgical centre by means of discrete-event computer simulation models. J. Eval. Clin. Pract. 14(6):1031–1037, 2008.CrossRefPubMedGoogle Scholar
  12. 12.
    Ferrin, D. M., Miller, M. J., Wininger, S., Neuendorf, M. S.: Analyzing incentives and scheduling in a major metropolitan hospital operating room through simulation. In: Ingalls, R. G., Rossetti, M. D., Smith, J. S., Peters, B. A. (Eds.) Proceedings of the 2004 Winter Simulation Conference, pp. 1975–1980 (2004)Google Scholar
  13. 13.
    Geranmayeh, S.: Optimizing surgical scheduling through integer programming and robust optimization. Master’s thesis, University of Ottawa (2015)Google Scholar
  14. 14.
    Gul, S., Denton, B. T., Fowler, J. W., Huschka, T., Bi-criteria scheduling of surgical services for an outpatient procedure center. Prod. Oper. Manag. 20(3):406–417, 2011.CrossRefGoogle Scholar
  15. 15.
    Harper, P. R., A framework for operational modelling of hospital resources. Health Care Management Science 5(3):165–173 , 2002.CrossRefPubMedGoogle Scholar
  16. 16.
    Ivarsson, B., Kimblad, P. O., Sjöberg, T., Larsson, S., Patient reactions to cancelled or postponed heart operations. J. Clin. Anesth. 10(2):75–81, 2002.Google Scholar
  17. 17.
    Ivarsson, B., Larsson, S., Sjöberg, T., Postponed or cancelled heart operations from the patient’s perspective. J. Clin. Anesth. 12(1):28–36, 2004.Google Scholar
  18. 18.
    Katsaliaki, K., and Mustafee, N., Applications of simulation within the healthcare context. J. Oper. Res. Soc. 62(8):1431–1451, 2011.CrossRefGoogle Scholar
  19. 19.
    Kumar, S., Modeling hospital surgical delivery process design using system simulation: Optimizing patient flow and bed capacity as an illustration. Technol. Health Care 19(1):1–20, 2011.PubMedGoogle Scholar
  20. 20.
    Landa, P., Sonnessa, M., Tànfani, E., Testi, A.: Managing emergent patient flow to inpatient wards: A discrete event simulation approach. In: Obaidat, M. S., Ören, T., Kacprzyk, J., Filipe, J. (Eds.) Simulation and Modeling Methodologies, Technologies and Applications, pp. 333–350. Springer (2015)Google Scholar
  21. 21.
    Müller, M. K., Dedes, K. J., Dindo, D., Steiner, S., Hahnloser, D., Clavien, P. -A., Impact of clinical pathways in surgery. Langenbeck’s Archives of Surgery 394(1):31–39, 2009.CrossRefPubMedGoogle Scholar
  22. 22.
    Ozcan, Y. A., Tànfani, E., Testi, A.: A simulation-based modelling framework to deal with clinical pathways. In: Proceedings of the 2011 Winter Simulation Conference, pp. 1190–1201 (2011)Google Scholar
  23. 23.
    Ozcan, Y. A., Tànfani, E., Testi, A.: Improving the performance of surgery-based clinical pathways: a simulation-optimization approach. Preprint (2016)Google Scholar
  24. 24.
    Panella, M., Marchisio, S., Stanislao, F. D., Reducing clinical variations with clinical pathways: do pathways work? Int. J. Qual. Health Care 15(6):509–521, 2003.CrossRefPubMedGoogle Scholar
  25. 25.
    Persson, M. J., and Persson, J. A., Analysing management policies for operating room planning using simulation. Health Care Manag. Sci. 13(2):182–191, 2010.CrossRefPubMedGoogle Scholar
  26. 26.
    Pidd, M.: Systems Modelling: Theory and Practice. Wiley. ISBN 0-470-86731-0 (2004)Google Scholar
  27. 27.
    Raunak, M., and Olsen, M.: A survey of validation in health care simulation studies. In: Tolk, A., Diallo, S. Y., Ryzhov, I. O., Yilmaz, L., Buckley, S., Miller, J. A. (Eds.) Proceedings of the 2014 Winter Simulation Conference, pp. 4089–4090 (2014)Google Scholar
  28. 28.
    Ronellenfitsch, U., Rössner, E., Jakob, J., Post, S., Hohenberger, P., Schwarzbach, M., Clinical pathways in surgery - should we introduce them into clinical routine? a review article. Langenbeck’s Arch. Surg. 393 (4):449–457, 2008.CrossRefGoogle Scholar
  29. 29.
    Saremi, A., Jula, P., ElMekkawy, T., Wang, G. G., Appointment scheduling of outpatient surgical services in a multistage operating room department. Int. J. Prod. Econ. 141(2):646–658, 2013.CrossRefGoogle Scholar
  30. 30.
    Sargent, R. G., Validation and verification of simulation models. J. Simul. 7(1):12–24, 2013.CrossRefGoogle Scholar
  31. 31.
    Sobolev, B. G., Sanchez, V., Vasilakis, C., Systematic review of the use of computer simulation modeling of patient flow in surgical care. J. Med. Syst. 35(1):1–16, 2011.CrossRefPubMedGoogle Scholar
  32. 32.
    Tait, A. R., Voepel-Lewis, T., Munro, H. M., Gutstein, H. B., Reynolds, P. I., Cancellation of pediatric outpatient surgery: economic and emotional implications for patients and their families. J. Clin. Anesth. 9(3):213–219, 1997.CrossRefPubMedGoogle Scholar
  33. 33.
    Tànfani, E., and Testi, A.: Improving surgery department performance via simulation and optimization. In: 2010 IEEE Workshop on Health Care Management (WHCM) (2010)Google Scholar
  34. 34.
    Tànfani, E., and Testi, A.: A simulation-based decision support tool to analyze clinical pathways in hospital. In: Tànfani, E., and Testi, A. (Eds.) Advanced Decision Making Methods Applied to Health Care, chapter 12, pp. 191–211. Springer Milan (2012)Google Scholar
  35. 35.
    Testi, A., Tanfani, E., Torre, G., A three-phase approach for operating theatre schedules. Health Care Management Science 10(2):163–172, 2007.CrossRefPubMedGoogle Scholar
  36. 36.
    van Oostrum, J. M., Houdenhoven, M. V., Vrielink, M. M. J., Klein, J., Hans, E. W., Klimek, M., Wullink, G., Steyerberg, E. W., Kazemier, G., A simulation model for determining the optimal size of emergency teams on call in the operating room at night. Anesth. Analg. 107(5):1655–1662, 2008.Google Scholar
  37. 37.
    Villarreal, M. C., and Keskinocak, P., Staff planning for operating rooms with different surgical services lines. Health Care Management Science 19(2):144–169, 2016.CrossRefPubMedGoogle Scholar
  38. 38.
    Zulkepli, J., Eldabi, T., Mustafee, N.: Hybrid simulation for modelling large systems: an example of integrated care model. In: Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., Uhrmacher, A. M. (Eds.) Proceedings of the 2012 Winter Simulation Conference, pp. 1–12 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations