Advertisement

Journal of Medical Systems

, 41:20 | Cite as

A Novel Nonlinear Mathematical Model of Thoracic Wall Mechanics During Cardiopulmonary Resuscitation Based on a Porcine Model of Cardiac Arrest

  • Ali JalaliEmail author
  • Allan F. Simpao
  • Vinay M. Nadkarni
  • Robert A. Berg
  • C. Nataraj
Image & Signal Processing
Part of the following topical collections:
  1. Image & Signal Processing

Abstract

Cardiopulmonary resuscitation (CPR) is used widely to rescue cardiac arrest patients, yet some physiological aspects of the procedure remain poorly understood. We conducted this study to characterize the dynamic mechanical properties of the thorax during CPR in a swine model. This is an important step toward determining optimal CPR chest compression mechanics with the goals of improving the fidelity of CPR simulation manikins and ideally chest compression delivery in real-life resuscitations. This paper presents a novel nonlinear model of the thorax that captures the complex behavior of the chest during CPR. The proposed model consists of nonlinear elasticity and damping properties along with frequency dependent hysteresis. An optimization technique was used to estimate the model coefficients for force-compression using data collected from experiments conducted on swine. To track clinically relevant, time-dependent changes of the chest’s properties, the data was divided into two time periods, from 1 to 10 min (early) and greater than 10 min (late) after starting CPR. The results showed excellent agreement between the actual and the estimated forces, and energy dissipation due to viscous damping in the late stages of CPR was higher when compared to the earlier stages. These findings provide insight into improving chest compression mechanics during CPR, and may provide the basis for developing CPR simulation manikins that more accurately represent the complex real world changes that occur in the chest during CPR.

Keywords

Cardiopulmonary resuscitation Chest compression Biomechanical modeling Hysteresis Parameter estimation Chest wall properties 

Notes

Acknowledgments

The research reported in this paper was supported by a grant from the National Institutes of Health (No. 1 R01 NS 72338 01A1). The authors express their gratitude to Dr. Robert Sutton, Dr. Matthew Maltese, Mrs. Dana Niles, and Dr. George Bratinov at CHOP for their significant contributions.

Compliance with Ethical Standards

Conflict of Interest

Ali Jalali, PhD declares that he has no conflict of interest. Allan F. Simpao, MD, MBI declares that he has no conflict of interest. Vinay M. Nadkarni, MD declares that he has no conflict of interest. Robert A. Berg, MD declares that he has no conflict of interest. C. Nataraj, PhD declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Sutton, R. M., French, B., Nishisaki, A., Niles, D. E., Maltese, M. R., Boyle, L., Stavland, M., Eilevstjønn, J., Arbogast, K. B., Berg, R. A., and Nadkarni, V. M., American Heart Association cardiopulmonary resuscitation quality targets are associated with improved arterial blood pressure during pediatric cardiac arrest. Resuscitation 84(2):168–72, 2013.CrossRefPubMedGoogle Scholar
  2. 2.
    Morrison, L. J., Neumar, R. W., Zimmerman, J. L., Link, M. S., Newby, L. K., McMullan, P. W., Hoek, T. V., Halverson, C. C., Doering, L., Peberdy, M. A., and Edelson, D. P., Strategies for improving survival after in-hospital cardiac arrest in the United States:2013 consensus recommendations: a consensus statement from the American Heart Association. Circulation 127:1538–1563, 2013.CrossRefPubMedGoogle Scholar
  3. 3.
    Sutton, R. M., Friess, S. H., Bhalala, U., Maltese, M. R., Naim, M. Y., Bratinov, G., Niles, D., Nadkarni, V. M., Becker, L. B., and Berg, R. A., Hemodynamic directed CPR improves short-term survival from asphyxia-associated cardiac arrest. Resuscitation 84:696–701, 2013.CrossRefPubMedGoogle Scholar
  4. 4.
    Tomlinson, A. E., Nysaether, J., Kramer-Johansen, J., Steen, P. A., and Dorph, E., Compression force-depth relationship during out-of-hospital cardiopulmonary resuscitation. Resuscitation 72:364–370, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    Andreka, P., and Frenneaux, M. P., Haemodynamics of cardiac arrest and resuscitation. Curr. Opin. Crit. Care 12:198–203, 2006.CrossRefPubMedGoogle Scholar
  6. 6.
    Gruben, K. G., Halperin, H. R., Popel, A. S., and Tsitlik, J. E., Canine sternal force-displacement relationship during car-diopulmonary resuscitation. IEEE Trans. Biomed. Eng. 46:788–796, 1999.CrossRefPubMedGoogle Scholar
  7. 7.
    Niemann, J. T., Rosborough, J. P., Kassabian, L., and Salami, B., A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation. Resuscitation 69:295–301, 2006.CrossRefPubMedGoogle Scholar
  8. 8.
    Halperin, H. R., Paradis, N., Ornato, J. P., Zviman, M., LaCorte, J., Lardo, A., and Kern, K. B., Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest. J. Am. Coll. Cardiol. 44:2214–20, 2004.CrossRefPubMedGoogle Scholar
  9. 9.
    Kent, R., Salzar, R., Kerrigan, J., Parent, D., Lessley, D., Sochor, M., Luck, J. F., Loyd, A., Song, Y., Nightingale, R., Bass, C. R., and Maltese, M. R., Pediatric thoracoabdominal biomechanics. Stapp Car Crash J. 53:373–401, 2009.PubMedGoogle Scholar
  10. 10.
    Kent, R., Lopez-Valdes, F. J., Lamp, J., Lau, S., Parent, D., Kerrigan, J., Lessley, D., Salzar, R., Sochor, M., Bass, D., and Maltese, M. R., Biomechanical response targets for physical and computational models of the pediatric trunk. Traffic Inj. Prev. 13:499–506, 2012.CrossRefPubMedGoogle Scholar
  11. 11.
    Geddes, L. A., Boland, M. K., Taleyarkhan, P. R., and Vitter, J., Chest compression force of trained and untrained CPR rescuers. Cardiovasc. Eng. 7:47–50, 2007.CrossRefPubMedGoogle Scholar
  12. 12.
    Abella, B. S., High-quality cardiopulmonary resuscitation: current and future directions. Curr. Opin. Crit. Care 22(3):218–24, 2016.CrossRefPubMedGoogle Scholar
  13. 13.
    Baubin, M., Haid, C., Hamm, P., and Gilly, H., Measuring forces and frequency during active compression decompression cardiopulmonary resuscitation: a device for training, research and real CPR. Resuscitation 43:17–24, 1999.CrossRefPubMedGoogle Scholar
  14. 14.
    Nysaether, J. B., Dorph, E., Rafoss, I., and Steen, P. A., Manikins with human-like chest properties-a new tool for chest compression research. IEEE Trans. Biomed. Eng. 55:2643–2650, 2008.CrossRefPubMedGoogle Scholar
  15. 15.
    Maltese, M. R., Castner, T., Niles, D., Nishisaki, A., Balasubramanian, S., Nysaether, J., Sutton, R., Nadkarni, V., and Arbogast, K. B., Methods for determining pediatric thoracic force-deection characteristics from cardiopulmonary resuscitation. Stapp Car Crash J. 52:83–105, 2008.PubMedGoogle Scholar
  16. 16.
    Maltese, M. R., Arbogast, K. B., Nadkarni, V., Berg, R., Balasubramanian, S., Seacrist, T., Kent, R. W., Parent, D. P., Craig, M., and Ridella, S. A., Incorporation of CPR data into ATD chest impact response requirements. Ann. Adv. Automot. Med. 54:79–88, 2010.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Bankman, I. N., Gruben, K. G., Halperin, H. R., Popel, A. S., Guerci, A. D., and Tsitlik, J. E., Identification of dynamic mechanical parameters of the human chest during manual cardiopulmonary resuscitation. IEEE Trans. Biomed. Eng. 37(2):211–217, 1990.CrossRefPubMedGoogle Scholar
  18. 18.
    Neurauter, A., Nysaether, J., Kramer-Johansen, J., Eilevstjnn, J., Paal, P., Myklebust, H., Wenzel, V., Lindner, K. H., Schmlz, W., Pytte, M., Steen, P. A., and Strohmenger, H. U., Comparison of mechanical characteristics of the human and porcine chest during cardiopulmonary resuscitation. Resuscitation 80:463–469, 2009.CrossRefPubMedGoogle Scholar
  19. 19.
    Nataraj, C., Vibration of Mechanical Systems. Cengage Learning, 2012.Google Scholar
  20. 20.
    Ihnát Rudinská, L., Hejna, P., Ihnát, P., Tomášková, H., Smatanová, M., and Dvořáček, I., Intra-thoracic injuries associated with cardiopulmonary resuscitation - Frequent and serious. Resuscitation 103:66–70, 2016.CrossRefPubMedGoogle Scholar
  21. 21.
    Strogatz, S. H., Nonlinear Dynamics And Chaos:With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity) Westview Press, 2001.Google Scholar
  22. 22.
    Samadani, M., Kitio Kwuimy, C., Nataraj, C., Model-based fault diagnostics of nonlinear systems using the features of the phase space response. Commun. Nonlinear Sci. Numer. Simul., 2014.Google Scholar
  23. 23.
    Friess, S. H., Sutton, R. M., Bhalala, U., Maltese, M. R., Naim, M. Y., Bratinov, G., Weiland, T. R., 3rd, Garuccio, M., Nadkarni, V. M., Becker, L. B., and Berg, R. A., Hemodynamic directed cardiopulmonary resuscitation improves short-term survival from ventricular fibrillation cardiac arrest. Crit. Care Med. 41:2698–2704, 2013.CrossRefPubMedGoogle Scholar
  24. 24.
    Friess, S. H., Sutton, R. M., French, B., Bhalala, U., Maltese, M. R., Naim, M. Y., Bratinov, G., Arciniegas Rodriguez, S., Weiland, T. R., Garuccio, M., Nadkarni, V. M., Becker, L. B., and Berg, R. A., Hemodynamic directed CPR improves cerebral perfusion pressure and brain tissue oxygenation. Resuscitation 88:1298–1303, 2014.CrossRefGoogle Scholar
  25. 25.
    Aase, S. O., Eftestl, T., Husy, J. H., Sunde, K., and Steen, P. A., CPR artifact removal from human ECG using optimal multichannel filtering. IEEE Trans. Biomed. Eng. 47:1440–1449, 2000.CrossRefPubMedGoogle Scholar
  26. 26.
    Aase, S. O., and Myklebust, H., Compression depth estimation for CPR quality assessment using DSP on accelerometer signals. IEEE Trans. Biomed. Eng. 49:263–268, 2002.CrossRefPubMedGoogle Scholar
  27. 27.
    Sutton, R. M., Maltese, M. R., Niles, D., French, B., Nishisaki, A., Arbogast, K. B., Donoghue, A., Berg, R. A., Helfaer, M. A., and Nadkarni, V., Quantitative analysis of chest compression interruptions during in-hospital resuscitation of older children and adolescents. Resuscitation 80:1259–1263, 2009.CrossRefPubMedGoogle Scholar
  28. 28.
    Badaki-Makun, O., Nadel, F., Donoghue, A., McBride, M., Niles, D., Seacrist, T., Maltese, M., Zhang, X., Paridon, S., and Nadkarni, V. M., Chest compression quality over time in pediatric resuscitations. Pediatrics 131:e797–e804, 2013.CrossRefPubMedGoogle Scholar
  29. 29.
    Jalali, A., Berg, R. A., Nadkarni, V., and Nataraj, C., Model based optimization of the cardiopulmonary resuscitation (CPR) procedure. Conf. Proc. IEEE. Eng. Med. Biol. 2012:715–718, 2012.Google Scholar
  30. 30.
    Zheng, Z. J., Croft, J. B., Giles, W. H., and Mensah, G. A., Sudden cardiac death in the United States, 1989 to 1998. Circulation 104:2158–2163, 2001.CrossRefPubMedGoogle Scholar
  31. 31.
    Sutton, R. M., Niles, D., Nysaether, J., Abella, B. S., Arbogast, K. B., Nishisaki, A., Maltese, M. R., Donoghue, A., Bishnoi, R., Helfaer, M. A., Myklebust, H., and Nadkarni, V., Quantitative analysis of CPR quality during in-hospital resuscitation of older children and adolescents. Pediatrics 124:494–499, 2009.CrossRefPubMedGoogle Scholar
  32. 32.
    Jalali, A., Berg, R., Nadkarni, V., Nataraj, C., Improving cardiopulmonary resuscitation, CPR by dynamic variation of CPR parameters. In: ASME Dynamic Systems and Control Conference, (DSCC), 2013.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ali Jalali
    • 1
    • 3
    Email author
  • Allan F. Simpao
    • 2
  • Vinay M. Nadkarni
    • 2
  • Robert A. Berg
    • 2
  • C. Nataraj
    • 3
  1. 1.Department of Anesthesiology and Critical Care MedicineThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of Anesthesiology and Critical Care MedicinePerelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.Villanova Center for Analytics of Dynamic Systems (VCADS)Villanova UniversityVillanovaUSA

Personalised recommendations