Journal of Medical Systems

, 40:266 | Cite as

A Novel Endoscope System for Position Detection and Depth Estimation of the Ureter

  • Enmin Song
  • Feng Yu
  • Hong Liu
  • Ning Cheng
  • Yunlong Li
  • Lianghai Jin
  • Chih-Cheng Hung
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Smart and Interactive Healthcare Systems

Abstract

Iatrogenic injury of ureter occurs occasionally in the clinical laparoscopic surgery. The ureter injury may cause the serious complications and kidney damage. To avoid such an injury, it is necessary to detect the ureter position in real-time. Currently, the endoscope cannot perform this type of function in detecting the ureter position in real-time. In order to have the real-time display of ureter position during the surgical operation, we propose a novel endoscope system which consists of a modified endoscope light and a new lumiontron tube with the LED light. The endoscope light is modified to detect the position of ureter by using our proposed dim target detection algorithm (DTDA). To make this new system functioning, two algorithmic approaches are proposed for the display of ureter position. The horizontal position of ureter is detected by the center line extraction method and the depth of ureter is estimated by the depth estimation method. Experimental results demonstrate that the proposed endoscope system can extract the position and depth information of ureter and exhibit superior performance in terms of accuracy and stabilization.

Keywords

Ureter injury Endoscope system Dim target detection algorithm (DTDA) Center line extraction method Depth estimation method 

References

  1. 1.
    Ciaccio, E.J., Bhagat, G., Lewis, S.K., Green, P.H., Suggestions for automatic quantitation of endoscopic image analysis to improve detection of small intestinal pathology in celiac disease patients. Comput. Biol. Med. 65: 364–368, 2015.CrossRefPubMedGoogle Scholar
  2. 2.
    Ṡevo, I., Avramović, A., Balasingham, I., Elle, O., Bergsland, J., Aabakken, L., Edge density based automatic detection of inflammation in colonoscopy videos. Comput. Biol. Med. 72:138–150, 2016.CrossRefPubMedGoogle Scholar
  3. 3.
    Reynisson, P.J., Leira, H.O., Hernes, T.N., Hofstad, E.F., Scali, M., Sorger, H., Amundsen, T., Lindseth, F., Langø, T., Navigated bronchoscopy: a technical review. J. Bronchol. Int. Pulmonol. 21(3):242–264, 2014.CrossRefGoogle Scholar
  4. 4.
    Lambert, R., Prevention of gastrointestinal cancer by surveillance endoscopy. EPMA J. 1(3):473–483, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lopez, A., and Liao, J.C., Emerging endoscopic imaging technologies for bladder cancer detection. Curr. Urol. Rep. 15(5):1–8, 2014.CrossRefGoogle Scholar
  6. 6.
    Parpala-Spårman, T., Paananen, I., Santala, M., Ohtonen, P., Hellström, P., Increasing numbers of ureteric injuries after the introduction of laparoscopic surgery. Scand. J. Urol. Nephrol. 42(5):422–427, 2008.CrossRefPubMedGoogle Scholar
  7. 7.
    Schimpf, M., Gottenger, E., Wagner, J., Universal ureteral stent placement at hysterectomy to identify ureteral injury: a decision analysis. BJOG 115(9):1151–1158, 2008.CrossRefPubMedGoogle Scholar
  8. 8.
    Aronson, M.P., and Bose, T.M., Urinary tract injury in pelvic surgery. Clin. Obstet. Gynecol. 45(2):428–438, 2002.CrossRefPubMedGoogle Scholar
  9. 9.
    Harkki-Siren, P., Sjoberg, J., Tiitinen, A., Urinary tract injuries after hysterectomy. Obstet. Gynecol. 92(1):113–118, 1998.CrossRefPubMedGoogle Scholar
  10. 10.
    Carley, M., McIntire, D., Carley, J., Schaffer, J., Incidence, risk factors and morbidity of unintended bladder or ureter injury during hysterectomy. Int. Urogynecol. J. 13(1):18–21, 2002.CrossRefGoogle Scholar
  11. 11.
    Bİlge, Y., Diagnostic neglect regarding ureter ligation after hysterectomy. Turkish J. Med. Sci. 37(4):239–242, 2007.Google Scholar
  12. 12.
    Tulikangas, P.K., Smith, T., Falcone, T., Boparai, N., Walters, M.D., Gross and histologic characteristics of laparoscopic injuries with four different energy sources. Fertil. Steril. 75(4):806–810, 2001.CrossRefPubMedGoogle Scholar
  13. 13.
    Selzman, A.A., and Spirnak, J.P., Iatrogenic ureteral injuries: a 20-year experience in treating 165 injuries. J. Urol. 155(3):878–881, 1996.CrossRefPubMedGoogle Scholar
  14. 14.
    Ghali, A.M., El Malik, E.M., Ibrahim, A.I., Ismail, G., Rashid, M., Ureteric injuries: diagnosis, management, and outcome. J. Trauma Acute Care Surg. 46(1):150–158, 1999.CrossRefGoogle Scholar
  15. 15.
    Nam, Y.-S., and Wexner, S.D., Clinical value of prophylactic ureteral stent indwelling during laparoscopic colorectal surgery. J. Korean Med. Sci. 17(5):633, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fu, W.-J., Wang, Z.-X., Li, G., Cui, F.-Z., Zhang, Y., Zhang, X., Comparison of a biodegradable ureteral stent versus the traditional double-j stent for the treatment of ureteral injury: an experimental study. Biomed. Mater. 7(6):065002, 2012.CrossRefPubMedGoogle Scholar
  17. 17.
    Tanaka, Y., Asada, H., Kuji, N., Yoshimura, Y., Ureteral catheter placement for prevention of ureteral injury during laparoscopic hysterectomy. J. Obstet. Gynaecol. Res. 34 (1): 67–72 , 2008.PubMedGoogle Scholar
  18. 18.
    Tsui, C., Klein, R., Garabrant, M., Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg. Endosc. 27(7):2253–2257, 2013.CrossRefPubMedGoogle Scholar
  19. 19.
    Geng, J., and Xie, J., Review of 3-d endoscopic surface imaging techniques. IEEE Sensors J. 14(4):945–960, 2014.CrossRefGoogle Scholar
  20. 20.
    Yang, L., Wang, J., Ando, T., Kubota, A., Yamashita, H., Sakuma, I., Chiba, T., Kobayashi, E., Vision-based endoscope tracking for 3d ultrasound image-guided surgical navigation. Comput. Med. Imaging Graph. 40:205–216, 2015.CrossRefPubMedGoogle Scholar
  21. 21.
    Kagawa, K., tanaka, E., Yamada, K., Kawahito, S., Tanida, J.: Deep-focus compound-eye camera with polarization filters for 3d endoscopes. In: SPIE BiOS, pp. 822714–822714 International Society for Optics and Photonics (2012)Google Scholar
  22. 22.
    Wang, Y., Liu, M., Liu, X., Zhao, Y., Dong, L., Hui, M., Zhai, X., Li, Y., Zhou, P.: A light efficiency uniformity detection system for medical rigid endoscope based on image processing. In: International Conference on Optical Instruments and Technology 2015, pp. 962307–962307 International Society for Optics and Photonics (2015)Google Scholar
  23. 23.
    Selka, F., Nicolau, S., Agnus, V., Bessaid, A., Marescaux, J., Soler, L., Context-specific selection of algorithms for recursive feature tracking in endoscopic image using a new methodology. Comput. Med. Imaging Graph. 40:49–61, 2015.CrossRefPubMedGoogle Scholar
  24. 24.
    Gill, B.S., Georgeson, K.E., Hardin, W.D. Jr: Image acquisition in laparoscopic and endoscopic surgery. In: Medical Imaging 1995, pp. 617–622 International Society for Optics and Photonics (1995)Google Scholar
  25. 25.
    Liedlgruber, M., and Uhl, A., Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review. IEEE Rev. Biomed. Eng. 4:73–88, 2011.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Enmin Song
    • 1
  • Feng Yu
    • 1
  • Hong Liu
    • 1
  • Ning Cheng
    • 1
  • Yunlong Li
    • 2
  • Lianghai Jin
    • 1
  • Chih-Cheng Hung
    • 3
  1. 1.School of Computer and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of UrologyAffiliated Kunsan Hospital of Jiangsu UniversityKunshan JiangsuChina
  3. 3.Center for Machine Vision and Security ResearchKennesaw State UniversityKennesawUSA

Personalised recommendations