Advertisement

Journal of Medical Systems

, 40:214 | Cite as

Towards Interactive Medical Content Delivery Between Simulated Body Sensor Networks and Practical Data Center

  • Xiaobo Shi
  • Wei Li
  • Jeungeun SongEmail author
  • M. Shamim Hossain
  • Sk Md Mizanur Rahman
  • Abdulhameed Alelaiwi
Mobile & Wireless Health
Part of the following topical collections:
  1. Smart and Interactive Healthcare Systems

Abstract

With the development of IoT (Internet of Thing), big data analysis and cloud computing, traditional medical information system integrates with these new technologies. The establishment of cloud-based smart healthcare application gets more and more attention. In this paper, semi-physical simulation technology is applied to cloud-based smart healthcare system. The Body sensor network (BSN) of system transmit has two ways of data collection and transmission. The one is using practical BSN to collect data and transmitting it to the data center. The other is transmitting real medical data to practical data center by simulating BSN. In order to transmit real medical data to practical data center by simulating BSN under semi-physical simulation environment, this paper designs an OPNET packet structure, defines a gateway node model between simulating BSN and practical data center and builds a custom protocol stack. Moreover, this paper conducts a large amount of simulation on the real data transmission through simulation network connecting with practical network. The simulation result can provides a reference for parameter settings of fully practical network and reduces the cost of devices and personnel involved.

Keywords

Semi-physical simulation Big data analysis Body sensor networks Health care 

Notes

Acknowledgments

The authors would like to extend their sincere appreciations to the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia for its funding of this research through the Profile Research Group project (PRG-1436-17).

References

  1. 1.
    Liu, C. H., Fan, J., Branch, J. W., Leung, K. K., Toward qoi and energy-efficiency in internet-of-things sensory environments. IEEE Transactions on Emerging Topics in Computing 2(4):473–487, 2014.CrossRefGoogle Scholar
  2. 2.
    Liu, C. H., Yang, B., Liu, T., Efficient naming, addressing and profile services in internet-of-things sensory environments. Ad Hoc Netw. 18:85–101, 2014.CrossRefGoogle Scholar
  3. 3.
    Zheng, K., Yang, Z., Zhang, K., Chatzimisios, P., Yang, K., Xiang, W., Big data-driven optimization for mobile networks toward 5g. IEEE Netw. 30(1):44–51, 2016.CrossRefGoogle Scholar
  4. 4.
    Chen, M., Mao, S., Liu, Y., Big data: A survey. Mobile Networks and Applications 19(2):171–209, 2014.CrossRefGoogle Scholar
  5. 5.
    Chen, M., Hao, Y., Li, Y., Lai, C. -F., Wu, D., On the computation offloading at ad hoc cloudlet: architecture and service modes. IEEE Commun. Mag. 53(6):18–24, 2015.CrossRefGoogle Scholar
  6. 6.
    Bouwmeester, W., Twisk, J. W., Kappen, T. H., van Klei, W. A., Moons, K. G., Vergouwe, Y., Prediction models for clustered data: comparison of a random intercept and standard regression model. BMC Med. Res. Methodol. 13(1):1, 2013.CrossRefGoogle Scholar
  7. 7.
    Liu, C. H., Wen, J., Yu, Q., Yang, B., Wang, W.: Healthkiosk: A family-based connected healthcare system for long-term monitoring. In: Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on.1em plus 0.5em minus 0.4emIEEE, pp. 241–246 (2011)Google Scholar
  8. 8.
    Raghupathi, W., and Raghupathi, V., Big data analytics in healthcare: promise and potential. Health Information Science and Systems 2(1):1, 2014.CrossRefGoogle Scholar
  9. 9.
    Lin, K., Wang, W., Wang, X., Ji, W., Wan, J., Qoe-driven spectrum assignment for 5g wireless networks using sdr. IEEE Wirel. Commun. 22(6):48–55, 2015.CrossRefGoogle Scholar
  10. 10.
    Lin, K., Xu, T., Song, J., Qian, Y., Sun, Y.: Node scheduling for all-directional intrusion detection in sdr-based 3d wsnsGoogle Scholar
  11. 11.
    Qiu, M., Ming, Z., Li, J., Gai, K., Zong, Z., Phase-change memory optimization for green cloud with genetic algorithm. IEEE Trans. Comput. 64(12):3528–3540, 2015.CrossRefGoogle Scholar
  12. 12.
    Chen, M., Hao, Y., Qiu, M., Song, J., Wu, D., Humar, I., Mobility-aware Caching and Computation Offloading in 5G Ultradense Cellular Networks. Sensors 16(7):974–987, 2016.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Chen, M., Zhang, Y., Hu, L., Taleb, T., Sheng, Z., Cloud-based Wireless Network: Virtualized, Reconfigurable, Smart Wireless Network to Enable 5G Technologies. ACM/Springer Mobile Networks and Applications 20(6):704–712, Dec. 2015.Google Scholar
  14. 14.
    Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., Escobar, G., Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. 33(7):1123–1131, 2014.CrossRefGoogle Scholar
  15. 15.
    Zhou, L., Specific versus diverse computing in media cloud. IEEE Trans. Circuits Syst. Video Technol. 25 (12):1888–1899, 2015.CrossRefGoogle Scholar
  16. 16.
    Zhou, L., and Wang, H., Toward blind scheduling in mobile media cloud: Fairness, simplicity, and asymptotic optimality. IEEE Trans. Multimedia 15(4):735–746, 2013.CrossRefGoogle Scholar
  17. 17.
    Lei, L., Zhong, Z., Zheng, K., Chen, J., Meng, H., Challenges on wireless heterogeneous networks for mobile cloud computing. IEEE Wirel. Commun. 20(3):34–44, 2013.CrossRefGoogle Scholar
  18. 18.
    Fortino, G., Di Fatta, G., Pathan, M., Vasilakos, A. V., Cloud-assisted body area networks: state-of-the-art and future challenges. Wirel. Netw 20(7):1925–1938, 2014.CrossRefGoogle Scholar
  19. 19.
    Fortino, G., Parisi, D., Pirrone, V., Di Fatta, G., Bodycloud: A saas approach for community body sensor networks. Futur. Gener. Comput. Syst. 35:62–79, 2014.CrossRefGoogle Scholar
  20. 20.
    Qiu, M., Chen, Z., Ming, Z., Qin, X., Niu, J.: Energy-aware data allocation with hybrid memory for mobile cloud systems (2014)Google Scholar
  21. 21.
    Chen, M., Ma, Y., Song, J., Lai, C., Hu, B., Smart Clothing: Connecting Human with Clouds and Big Data for Sustainable Health Monitoring. ACM/Springer Mobile Networks and Applications. doi: 10.1007/s11036-016-0745-1,2016..
  22. 22.
    Tian, D., Zhou, J., Sheng, Z., Leung, V.: Robust energy-efficient mimo transmission for cognitive vehicular networks (2015)Google Scholar
  23. 23.
    Tian, D., Zhou, J., Wang, Y., Zhang, G., Xia, H., An adaptive vehicular epidemic routing method based on attractor selection model. Ad Hoc Netw. 36:465–481, 2016.CrossRefGoogle Scholar
  24. 24.
    Tian, D., Zhou, J., Wang, Y., Lu, Y., Xia, H., Yi, Z., A dynamic and self-adaptive network selection method for multimode communications in heterogeneous vehicular telematics. IEEE Trans. Intell. Transp. Syst. 16(6):3033–3049, 2015.CrossRefGoogle Scholar
  25. 25.
    Li, Y., Dai, W., Ming, Z., Qiu, M., Privacy protection for preventing data over-collection in smart city. IEEE Trans. Comput. 65(5):1339–1350, 2016.CrossRefGoogle Scholar
  26. 26.
    Liu, C. H., Fan, J., Hui, P., Wu, J., Leung, K. K., Toward qoi and energy efficiency in participatory crowdsourcing. IEEE Trans. Veh. Technol. 64(10):4684–4700, 2015.CrossRefGoogle Scholar
  27. 27.
    Liu, C. H., Hui, P., Branch, J. W., Bisdikian, C., Yang, B.: Efficient network management for context-aware participatory sensing. In: Sensor, mesh and ad hoc communications and networks (secon), 2011 8th annual ieee communications society conference on.1em plus 0.5em minus 0.4emIEEE, pp. 116–124 (2011)Google Scholar
  28. 28.
    Zhang, B., Song, Z., Liu, C. H., Ma, J., Wang, W., An event-driven qoi-aware participatory sensing framework with energy and budget constraints. ACM Trans. Intell. Syst. Technol. 6(3):42, 2015.Google Scholar
  29. 29.
    Liu, C. H., Leung, K. K., Gkelias, A., A generic admission-control methodology for packet networks. IEEE Trans. Wirel. Commun. 13(2):604–617, 2014.CrossRefGoogle Scholar
  30. 30.
    Taleb, T., Ksentini, A., Chen, M., Jantti, R., Coping with emerging mobile social media applications through dynamic service function chaining. IEEE Trans. Wirel. Commun. 15(4):2859–2871, 2016.CrossRefGoogle Scholar
  31. 31.
    Zhang, Y., Chen, M., Mao, S., Hu, L., Leung, V. C., Cap Community activity prediction based on big data analysis. IEEE Netw. 28(4):52–57, 2014.CrossRefGoogle Scholar
  32. 32.
    Bottura, R., Babazadeh, D., Zhu, K., Borghetti, A., Nordström, L., Nucci, C. A.: Sitl and hla co-simulation platforms: Tools for analysis of the integrated ict and electric power system. In: EUROCON, 2013 IEEE.1em plus 0.5em minus 0.4emIEEE, pp. 918–925 (2013)Google Scholar
  33. 33.
    Chen, M., Opnet network simulation. Vol. 1: Press of Tsinghua University, 2004.Google Scholar
  34. 34.
    Luo, T., Tan, H. -P., Quek, T. Q., Sensor openflow: Enabling software-defined wireless sensor networks. IEEE Commun. Lett. 16(11):1896–1899, 2012.CrossRefGoogle Scholar
  35. 35.
    Lin, K., Song, J., Luo, J., Ji, W., Hossain, M. S., Ghoneim, A.: Gvt: Green video transmission in the mobile cloud networksGoogle Scholar
  36. 36.
    Lin, K., Chen, M., Deng, J., Hassan, M. M., Fortino, G.: Enhanced fingerprinting and trajectory prediction for iot localization in smart buildingsGoogle Scholar
  37. 37.
    Hossain, M. S.: Cloud-supported cyber–physical localization framework for patients monitoring (2015)Google Scholar
  38. 38.
    Fortino, G., Galzarano, S., Gravina, R., Li, W., A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Information Fusion 22:50–70, 2015.CrossRefGoogle Scholar
  39. 39.
    Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., Jafari, R., Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Transactions on Human-Machine Systems 43(1):115–133, 2013.CrossRefGoogle Scholar
  40. 40.
    Jonnagaddala, J., Liaw, S. -T., Ray, P., Kumar, M., Chang, N. -W., Dai, H. -J., Coronary artery disease risk assessment from unstructured electronic health records using text mining. J. Biomed. Inform. 58: S203–S210, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen, M., OPNET IoT Simulation , Huazhong University of Science and Technology Press, ISBN 978-7-5609-9510-6, 2015.Google Scholar
  42. 42.
    Hossain, M. S., Muhammad, G., Alhamid, M. F., Song, B., Al-Mutib, K., Audio-visual emotion recognition using big data towards 5g. Mobile Networks and Applications,1–11, 2016.Google Scholar
  43. 43.
  44. 44.
  45. 45.
  46. 46.
    Hakiri, A., Gokhale, A., Berthou, P., Schmidt, D. C., Gayraud, T., Software-defined networking: Challenges and research opportunities for future internet. Comput. Netw. 75:453–471 , 2014.CrossRefGoogle Scholar
  47. 47.
    McKeown, N., Software-defined networking. INFOCOM keynote talk 17(2):30–32, 2009.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaobo Shi
    • 1
    • 2
  • Wei Li
    • 1
  • Jeungeun Song
    • 1
    Email author
  • M. Shamim Hossain
    • 3
  • Sk Md Mizanur Rahman
    • 4
  • Abdulhameed Alelaiwi
    • 3
  1. 1.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.College of Computer and Information EngineeringHenan Normal UniversityXinxiangChina
  3. 3.Software Engineering Department, College of Computer and Information ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Information Systems Department, College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations