Journal of Medical Systems

, 40:200 | Cite as

On the Design of Smart Homes: A Framework for Activity Recognition in Home Environment

  • Franco Cicirelli
  • Giancarlo Fortino
  • Andrea GiordanoEmail author
  • Antonio Guerrieri
  • Giandomenico Spezzano
  • Andrea Vinci
Patient Facing Systems
Part of the following topical collections:
  1. Advances in Ambient Intelligence for Health (AmIHEALTH 2015)


A smart home is a home environment enriched with sensing, actuation, communication and computation capabilities which permits to adapt it to inhabitants preferences and requirements. Establishing a proper strategy of actuation on the home environment can require complex computational tasks on the sensed data. This is the case of activity recognition, which consists in retrieving high-level knowledge about what occurs in the home environment and about the behaviour of the inhabitants. The inherent complexity of this application domain asks for tools able to properly support the design and implementation phases. This paper proposes a framework for the design and implementation of smart home applications focused on activity recognition in home environments. The framework mainly relies on the Cloud-assisted Agent-based Smart home Environment (CASE) architecture offering basic abstraction entities which easily allow to design and implement Smart Home applications. CASE is a three layered architecture which exploits the distributed multi-agent paradigm and the cloud technology for offering analytics services. Details about how to implement activity recognition onto the CASE architecture are supplied focusing on the low-level technological issues as well as the algorithms and the methodologies useful for the activity recognition. The effectiveness of the framework is shown through a case study consisting of a daily activity recognition of a person in a home environment.


Smart homes Internet of things Activity recognition Cloud computing Multi agent system Analytics Wireless sensor and actuator networks Wearable wireless body sensor networks 



This work has been partially supported by “Smart platform for monitoring and management of in-home security and safety of people and structures” project that is part of the DOMUS District, funded by the Italian Government (PON03PE_00050_1).


  1. 1.
    Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I., Internet of Things. Ad Hoc Netw. 10(7): 1497–1516, 2012.CrossRefGoogle Scholar
  2. 2.
    Fortino, G., Guerrieri, A., Russo, W., Agent-oriented smart objects development. In: Computer Supported Cooperative Work in Design (CSCWD), 2012 IEEE 16th International Conference on, pp. 907–912 (2012)Google Scholar
  3. 3.
    Bierhoff, I., van Berlo, A., Abascal, J., Allen, B., Civit, A., Fellbaum, K., Kemppainen, E., Bitterman, N., Freitas, D., Kristiansson, K. Smart home environment. COST Brussels (2007)Google Scholar
  4. 4.
    Alkar, A. Z., and Buhur, U., An Internet Based Wireless Home Automation System for Multifunctional Devices. IEEE Trans. on Consum. Electron. 51(4):1169–1174, 2005.CrossRefGoogle Scholar
  5. 5.
    Serra, J., Pubill, D., Antonopoulos, A., Verikoukis, C. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints The Scientific World Journal (2014)Google Scholar
  6. 6.
    Fortino, G., Guerrieri, A., O’Hare, G., Ruzzelli, A., A flexible building management framework based on wireless sensor and actuator networks. J. Netw. Comput. Appl. 35:1934–1952, 2012.CrossRefGoogle Scholar
  7. 7.
    Guerrieri, A., Fortino, G., Ruzzelli, A., O’hare, G. A WSN-based Building Management Framework to Support Energy-Saving Applications in Buildings. Hershey, PA USA: IGI Global (2011)Google Scholar
  8. 8.
    Rashidi, P., and Cook, D. J., Com: A method for mining and monitoring human activity patterns in home-based health monitoring systems. ACM Trans. Intell. Syst. Technol. 4(4):64:1–64:20, 2013.CrossRefGoogle Scholar
  9. 9.
    Pavón-Pulido, N., López-Riquelme, J. A., Ferruz-Melero, J., Vega-rodríguez, M. A., Barrios-León, A. J., A service robot for monitoring elderly people in the context of ambient assisted living. J. Ambient Intell. Smart Environ. 6(6):595–621, 2014.Google Scholar
  10. 10.
    Dohr, A., Modre-Opsrian, R., Drobics, M., Hayn, D., Schreier, G., The internet of things for ambient assisted living. In: Information Technology: New Generations (ITNG), 2010 Seventh International Conference on, pp. 804–809 (2010)Google Scholar
  11. 11.
    Richter, P., Toledano-Ayala, M., Soto-Zarazúa, G. M., Rivas-Araiza, E.A., A Survey of Hybridisation Methods of GNSS and Wireless LAN Based Positioning System. J. Ambient Intell. Smart Environ. 6(6):723–738, 2014.Google Scholar
  12. 12.
    Sang-hyun, L., Lee, J.g., Kyung-il, M., Smart Home Security System Using Multiple ANFIS. Int. J. Smart Home 7(3):121–132, 2013.Google Scholar
  13. 13.
    Fortino, G., Guerrieri, A., Lacopo, M., Lucia, M., Russo, W., An agent-based middleware for cooperating smart objects. In: International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 387–398. Springer (2013)Google Scholar
  14. 14.
    Jennings, N. R., On agent-based software engineering. Artif. Intell. 117(2):277–296, 2000.CrossRefGoogle Scholar
  15. 15.
    Cicirelli, F., and Nigro, L., Control centric framework for model continuity in time-dependent multi-agent systems. Concurrency and Computation: Practice and Experience. n/a–n/a cpe.3802 (2016)Google Scholar
  16. 16.
    Giordano, A., Spezzano, G., Vinci, A., A smart platform for large-scale networked cyber-physical systems. Management of cyber physical objects in the future internet of things methods, architectures and applications. Springer (2016)Google Scholar
  17. 17.
    Rashidi, P., and Mihailidis, A., A survey on Ambient-Assisted living tools for older adults. IEEE J. Biomedical Health Informat. 17(3):579–590, 2013.CrossRefGoogle Scholar
  18. 18.
    Savidis, A., and Stephanidis, C., Distributed interface bits: dynamic dialogue composition from ambient computing resources. Personal Ubiquitous Comput. 9(3):142–168, 2005.CrossRefGoogle Scholar
  19. 19.
    Bardram, J. E., Kjær, R. E., Pedersen, M., Context-Aware User Authentication - Supporting Proximity-Based Login in Pervasive Computing. In: Dey, A., Schmidt, A., McCarthy, J. (Eds.) UbiComp 2003: Ubiquitous Computing. Volume 2864 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 107–123 (2003)Google Scholar
  20. 20.
    Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R. H., Nahrstedt, K., A Middleware Infrastructure for Active Spaces. IEEE Pervasive Comput. 1(4):74–83, 2002.CrossRefGoogle Scholar
  21. 21.
    Cerqueira, R., Cassino, C., Ierusalimschy, R., Dynamic Component Gluing Across Different Componentware Systems. In: Proceedings of the International Symposium on Distributed Objects and Applications. DOA ’99, Washington, DC, USA, IEEE Computer Society, pp. 362– (1999)Google Scholar
  22. 22.
    Evangelatos, O., Samarasinghe, K., Rolim, J., Syndesi: A Framework for Creating Personalized Smart Environments Using Wireless Sensor Networks. In: Proceedings of the 2013 IEEE international conference on distributed computing in sensor systems. DCOSS ’13, washington, DC, USA, pp. 325–330. IEEE Computer Society (2013)Google Scholar
  23. 23.
    Hoque, E., and Stankovic, J. A., AALO: Activity recognition in smart homes using Active Learning in the presence of Overlapped activities. In: 6th International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2012, pp. 139–146 (2012)Google Scholar
  24. 24.
    Aggarwal, C. C., Kong, X., Gu, Q., Han, J., Yu, P. S., Active learning: A survey. In: Data Classification: Algorithms and Applications, pp. 571–606 (2014)Google Scholar
  25. 25.
    Cook, D. J., Krishnan, N. C., Rashidi, P., Activity Discovery and Activity Recognition: A New Partnership. IEEE Trans. on Systems, Man, and Cybernetics 43(3):820–828, 2013.Google Scholar
  26. 26.
    Suryadevara, N., Mukhopadhyay, S., Wang, R., Rayudu, R., Forecasting the behavior of an elderly using wireless sensors data in a smart home. Eng. Appl. Artif. Intell. 26(10):2641–2652, 2013.CrossRefGoogle Scholar
  27. 27.
    Chen, L., Nugent, C., Okeyo, G., An Ontology-Based hybrid approach to activity modeling for smart homes. IEEE Trans. on Human-Machine Syst. 44(1):92–105, 2014.CrossRefGoogle Scholar
  28. 28.
    Steele, R., Lo, A., Secombe, C., Wong, Y. K., Elderly persons perception and acceptance of using wireless sensor networks to assist healthcare. Int. J. Med. Inform. 78(12):788–801, 2009.CrossRefPubMedGoogle Scholar
  29. 29.
    Giordano, A., Spezzano, G., Vinci, A., Rainbow: An Intelligent Platform for Large-Scale Networked Cyber-Physical Systems. In: Proc. of the 5th International Workshop on Networks of Cooperating Objects for Smart Cities (UBICITEC), pp. 70–85 (2014)Google Scholar
  30. 30.
    Gomez, C., and Paradells, J., Wireless home automation networks: A survey of architectures and technologies. IEEE Commun. Mag. 48(6):92–101, 2010.CrossRefGoogle Scholar
  31. 31.
    Starsinic, M., System architecture challenges in the home m2m network. In: Applications and Technology Conference (LISAT), 2010 Long Island Systems, pp. 1–7 (2010)Google Scholar
  32. 32.
    Ivanov, B., Ruser, H., Kellner, M., Presence detection and person identification in smart homes. In: Int. Conf. Sensors and Systems, St. Petersburg, pp. 12–14 (2002)Google Scholar
  33. 33.
    Rawi, M. I. M., and Al-Anbuky, A., Wireless sensor networks and human comfort index. Pers. Ubiquit. Comput. 17(5):999–1011, 2013.CrossRefGoogle Scholar
  34. 34.
    Basu, D., Moretti, G., Gupta, G.S., Marsland, S., Wireless sensor network based smart home: Sensor selection, deployment and monitoring. In: Sensors applications symposium (SAS) 2013 IEEE, IEEE, pp. 49–54 (2013)Google Scholar
  35. 35.
    Chunduru, V., and Subramanian, N., Effects of power lines on performance of home control system. In: Power electronics, drives and energy systems, 2006. PEDES’06. International Conference on, IEEE, pp. 1–6 (2006)Google Scholar
  36. 36.
    Pulseworx: Upb technology description (2016)Google Scholar
  37. 37.
    Darbee, P. Insteon: The details. Smarthome Technology (2005)Google Scholar
  38. 38.
    Petrova, M., Riihijarvi, J., Mahonen, P., Labella, S., Performance study of ieee 802.15.4 using measurements and simulations. In: Wireless Communications and Networking Conference, 2006. WCNC 2006. IEEE, Vol. 1, pp. 487–492 (2006)Google Scholar
  39. 39.
    Baronti, P., Pillai, P., Chook, V.W., Chessa, S., Gotta, A., Hu, Y. F., Wireless sensor networks: A survey on the state of the art and the 802.15.4 and zigbee standards. Comput. Commun. 30(7):1655–1695, 2007. Wired/Wireless Internet Communications.CrossRefGoogle Scholar
  40. 40.
    Shelby, Z., and Bormann, C. 6loWPAN: The wireless embedded Internet. Volume 43 John Wiley & Sons (2011)Google Scholar
  41. 41.
    Alliance, Z. W., Z-wave: The new standard in wireless remote control (2009)Google Scholar
  42. 42.
    Galeev, M. T., Catching the z-wave. Embed. Syst. Des. 19(10):28, 2006.Google Scholar
  43. 43.
    Zou, Z., Li, K. J., Li, R., Wu, S., Smart home system based on ipv6 and zigbee technology. Procedia Eng. 15:1529–1533 , 2011.CrossRefGoogle Scholar
  44. 44.
    Gill, K., Yang, S. H., Yao, F., Lu, X., A zigbee-based home automation system. IEEE Trans. Consum. Electron. 55(2):422–430, 2009.CrossRefGoogle Scholar
  45. 45.
    Alliance, Z. Zigbee home automation public application profile. IEEE J. Select Areas Commun (2007)Google Scholar
  46. 46.
    Hazmi, A., Rinne, J., Valkama, M., Feasibility study of ieee 802.11 ah radio technology for iot and m2m use cases. In: Globecom workshops (GC wkshps) 2012 IEEE, IEEE, pp. 1687–1692 (2012)Google Scholar
  47. 47.
    Sun, W., Choi, M., Choi, S., Ieee 802.11 ah: a long range 802.11 wlan at sub 1 ghz. J. ICT Stand. 1(1): 83–108, 2013.Google Scholar
  48. 48.
    Mackensen, E., Lai, M., Wendt, T. M., Bluetooth low energy (ble) based wireless sensors. In: Sensors, 2012 IEEE, IEEE, pp. 1–4 (2012)Google Scholar
  49. 49.
    Specification of the Bluetooth System v4.0. (2016)
  50. 50.
    Kwak, K. S., Ullah, S., Ullah, N., An overview of ieee 802.15. 6 standard. In: Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2010 3rd International Symposium on, IEEE, pp. 1–6 (2010)Google Scholar
  51. 51.
    [Online], D.I.I. Thisisant: the wireless sensor network solution (2016)Google Scholar
  52. 52.
    1902.1-2009 - IEEE Standard for Long Wavelength Wireless Network Protocol. (2016)
  53. 53.
    Wong, A., McDonagh, D., Omeni, O., Nunn, C., Hernandez-Silveira, M., Burdett, A., Sensium: An ultra-low-power wireless body sensor network platform: Design and application challenges. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 6576–6579 (2009)Google Scholar
  54. 54.
    Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A., Sgroi, M., SPINE: a domain-specific framework for rapid prototyping of WBSN applications. Softw. Pract. Experience 41(03):237–265, 2011.CrossRefGoogle Scholar
  55. 55.
    Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., Leung, V. C. M., Body area networks: a survey. Mobile Netw. Appl. 16(2):171–193, 2010.CrossRefGoogle Scholar
  56. 56.
    Dementyev, A., Hodges, S., Taylor, S., Smith, J.: Power consumption analysis of bluetooth low energy, zigbee and ant sensor nodes in a cyclic sleep scenario. In: Wireless symposium (IWS), 2013 IEEE International, IEEE, pp. 1–4 (2013)Google Scholar
  57. 57.
    Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., Jafari, R., Enabling Effective Programming and Flexible Management of Efficient Body Sensor Network Applications. IEEE Trans. Human-Machine Syst. 43(1): 115–133, 2013.CrossRefGoogle Scholar
  58. 58.
    Hao, Y., and Foster, R., Wireless body sensor networks for health-monitoring applications. Physiol. Meas. 29(11):R27 , 2008.CrossRefPubMedGoogle Scholar
  59. 59.
    Agrawal, R., and Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th international conference on very large data bases. VLDB ’94, san francisco, CA, USA, Morgan Kaufmann Publishers Inc, pp. 487–499 (1994)Google Scholar
  60. 60.
    Hipp, J., Güntzer, U., Nakhaeizadeh, G., Algorithms for association rule mining — a general survey and comparison. SIGKDD Explor. Newsl. 2(1):58–64, 2000.CrossRefGoogle Scholar
  61. 61.
    Ester, M., Kriegel, H. P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, Vol. 96, pp. 226–231 (1996)Google Scholar
  62. 62.
    Pudil, P., Novovičová, J., Kittler, J., Floating search methods in feature selection. Pattern Recogn. Lett. 15(11):1119–1125, 1994.CrossRefGoogle Scholar
  63. 63.
    Cover, T., and Hart, P., Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1):21–27, 1967.CrossRefGoogle Scholar
  64. 64.
    Weyns, D., Omicini, A., Odell, J., Environment as a first class abstraction in multiagent systems. Auton. Agent. Multi-Agent Syst. 14(1):5–30, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Franco Cicirelli
    • 1
  • Giancarlo Fortino
    • 1
    • 2
  • Andrea Giordano
    • 1
    Email author
  • Antonio Guerrieri
    • 1
  • Giandomenico Spezzano
    • 1
  • Andrea Vinci
    • 1
  1. 1.CNR – National Research Council of ItalyInstitute for High Performance Computing and Networking (ICAR)RendeItaly
  2. 2.Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e SistemisticaUniversità della CalabriaRendeItaly

Personalised recommendations