Identification of Major Adverse Kidney Events Within the Electronic Health Record

  • Matthew W. Semler
  • Todd W. Rice
  • Andrew D. Shaw
  • Edward D. Siew
  • Wesley H. Self
  • Avinash B. Kumar
  • Daniel W. Byrne
  • Jesse M. Ehrenfeld
  • Jonathan P. Wanderer
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement

Abstract

Acute kidney injury is common among critically ill adults and is associated with increased mortality and morbidity. The Major Adverse Kidney Events by 30 days (MAKE30) composite of death, new renal replacement therapy, or persistent renal dysfunction is recommended as a patient-centered outcome for pragmatic trials involving acute kidney injury. Accurate electronic detection of the MAKE30 endpoint using data within the electronic health record (EHR) could facilitate the use of the EHR in large-scale kidney injury research. In an observational study using prospectively collected data from 200 admissions to a single medical intensive care unit, we tested the performance of electronically-extracted data in identifying the MAKE30 composite compared to the reference standard of two-physician manual chart review. The incidence of MAKE30 on manual-review was 16 %, which included 8.5 % for in-hospital mortality, 3.5 % for new renal replacement therapy, and 8.5 % for persistent renal dysfunction. There was strong agreement between the electronic and manual assessment of MAKE30 (98.5 % agreement [95 % CI 96.5–100.0 %]; kappa 0.95 [95 % CI 0.87–1.00]; P < 0.001), with only three patients misclassified by electronic assessment. Performance of the electronic MAKE30 assessment was similar among patients with and without CKD and with and without a measured serum creatinine in the 12 months prior to hospital admission. In summary, accurately identifying the MAKE30 composite outcome using EHR data collected as a part of routine care appears feasible.

Keywords

Acute kidney injury Major adverse kidney events Intensive care unit Electronic health record 

Notes

Acknowledgments

The authors would like to thank Michael Plante, Karen McCarthy, Hongjuan Blazer, and Stephen Baker from the Vanderbilt Anesthesia and Perioperative Informatics Research (VAPIR) Division.

Authors Contributions

Study concept and design: M.W.S., T.W.R., A.D.S, E.D.S., J.M.E., J.P.W. Acquisition of data: M.W.S., T.W.R., J.M.E., J.P.W.; Analysis and interpretation of data: M.W.S., T.W.R., D.W.B., J.M.E., J.P.W.; Drafting of the manuscript: M.W.S., J.P.W.; Critical revision of the manuscript for important intellectual content: M.W.S., T.W.R., A.D.S, E.D.S., W.H.S., A.B.K., D.W.B., J.M.E., J.P.W.; Statistical analysis: M.W.S., D.W.B., J.P.W.; Study supervision: M.W.S., T.W.R., A.D.S, J.M.E., J.P.W. Matthew W. Semler and Jonathan P. Wanderer had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Matthew W. Semler conducted and is responsible for the data analysis. No portion of this work has been previously presented.

Compliance with Ethical Standards

Source of Funding and Conflicts of Interest

Biostatistical support was provided by Vanderbilt Institute for Clinical and Translational Research grant support (UL1 TR000445 from NCATS/NIH). M.W.S. was supported by a National Heart, Lung, and Blood Institute (NHLBI) T32 award (HL087738 09). E.W.S. received support from the Vanderbilt Center for Kidney Disease (VCKD) and the VA Health Services Research and Development Service (HSR&D IIR-13-073). W.H.S was supported in part by K23GM110469 from the National Institute of General Medical Sciences. J.P.W received support from by the Foundation for Anesthesia Education and Research (FAER, Schaumburg, IL, USA) and Anesthesia Quality Institute (AQI, Schaumburg, IL, USA)’s Health Service Research Mentored Research Training Grant (HSR-MRTG). The funding institutions had no role in (1) conception, design, or conduct of the study, (2) collection, management, analysis, interpretation, or presentation of the data, or (3) preparation, review, or approval of the manuscript. All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. The authors declare no potential conflicts of interest. T.W.R. reported serving on an advisory board for Avisa Pharma, LLC and as a DSMB member for GlaxoSmithKline PLC. W.H.S. reported serving on advisory boards for BioFire Diagnostics, Inc and Venaxis, Inc.

References

  1. 1.
    Kashani, K., Al-Khafaji, A., Ardiles, T., Artigas, A., Bagshaw, S. M., Bell, M., Bihorac, A., Birkhahn, R., Cely, C. M., Chawla, L. S., Davison, D. L., Feldkamp, T., Forni, L. G., Gong, M. N., Gunnerson, K. J., Haase, M., Hackett, J., Honore, P. M., Hoste, E. A. J., Joannes-Boyau, O., Joannidis, M., Kim, P., Koyner, J. L., Laskowitz, D. T., Lissauer, M. E., Marx, G., McCullough, P. A., Mullaney, S., Ostermann, M., Rimmelé, T., Shapiro, N. I., Shaw, A. D., Shi, J., Sprague, A. M., Vincent, J.-L., Vinsonneau, C., Wagner, L., Walker, M. G., Wilkerson, R. G., Zacharowski, K., and Kellum, J. A., Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care Lond. Engl. 17(1):R25, 2013. doi:10.1186/cc12503.CrossRefGoogle Scholar
  2. 2.
    Bellomo, R., Kellum, J. A., and Ronco, C., Acute kidney injury. Lancet Lond. Engl. 380(9843):756–766, 2012. doi:10.1016/S0140-6736(11)61454-2.CrossRefGoogle Scholar
  3. 3.
    Metnitz, P. G. H., Krenn, C. G., Steltzer, H., Lang, T., Ploder, J., Lenz, K., Le Gall, J.-R., and Druml, W., Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit. Care Med. 30(9):2051–2058, 2002. doi:10.1097/01.CCM.0000026732.62103.DF.CrossRefPubMedGoogle Scholar
  4. 4.
    Uchino, S., Kellum, J. A., Bellomo, R., Doig, G. S., Morimatsu, H., Morgera, S., Schetz, M., Tan, I., Bouman, C., Macedo, E., Gibney, N., Tolwani, A., Ronco, C., and Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators, Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 294(7):813–818, 2005. doi:10.1001/jama.294.7.813.CrossRefPubMedGoogle Scholar
  5. 5.
    Bagshaw, S. M., Laupland, K. B., Doig, C. J., Mortis, G., Fick, G. H., Mucenski, M., Godinez-Luna, T., Svenson, L. W., and Rosenal, T., Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: A population-based study. Crit. Care Lond. Engl. 9(6):R700–R709, 2005. doi:10.1186/cc3879.CrossRefGoogle Scholar
  6. 6.
    Coca, S. G., Singanamala, S., and Parikh, C. R., Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 81(5):442–448, 2012. doi:10.1038/ki.2011.379.CrossRefPubMedGoogle Scholar
  7. 7.
    Kellum, J. A., Levin, N., Bouman, C., and Lameire, N., Developing a consensus classification system for acute renal failure. Curr. Opin. Crit. Care 8(6):509–514, 2002.CrossRefPubMedGoogle Scholar
  8. 8.
    Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group, KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2(Suppl):1–138, 2012.Google Scholar
  9. 9.
    Palevsky, P. M., Molitoris, B. A., Okusa, M. D., Levin, A., Waikar, S. S., Wald, R., Chertow, G. M., Murray, P. T., Parikh, C. R., Shaw, A. D., Go, A. S., Faubel, S. G., Kellum, J. A., Chinchilli, V. M., Liu, K. D., Cheung, A. K., Weisbord, S. D., Chawla, L. S., Kaufman, J. S., Devarajan, P., Toto, R. M., Hsu, C., Greene, T., Mehta, R. L., Stokes, J. B., Thompson, A. M., Thompson, B. T., Westenfelder, C. S., Tumlin, J. A., Warnock, D. G., Shah, S. V., Xie, Y., Duggan, E. G., Kimmel, P. L., and Star, R. A., Design of clinical trials in acute kidney injury: Report from an NIDDK workshop on trial methodology. Clin. J. Am. Soc. Nephrol. CJASN 7(5):844–850, 2012. doi:10.2215/CJN.12791211.CrossRefPubMedGoogle Scholar
  10. 10.
    Stone, G. W., Maehara, A., Lansky, A. J., de Bruyne, B., Cristea, E., Mintz, G. S., Mehran, R., McPherson, J., Farhat, N., Marso, S. P., Parise, H., Templin, B., White, R., Zhang, Z., Serruys, P. W., and PROSPECT Investigators, A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364(3):226–235, 2011. doi:10.1056/NEJMoa1002358.CrossRefPubMedGoogle Scholar
  11. 11.
    Shaw, A., Models of preventable disease: Contrast-induced nephropathy and cardiac surgery-associated acute kidney injury. Contrib. Nephrol. 174:156–162, 2011. doi:10.1159/000329387.CrossRefPubMedGoogle Scholar
  12. 12.
    Weisbord, S. D., Gallagher, M., Kaufman, J., Cass, A., Parikh, C. R., Chertow, G. M., Shunk, K. A., McCullough, P. A., Fine, M. J., Mor, M. K., Lew, R. A., Huang, G. D., Conner, T. A., Brophy, M. T., Lee, J., Soliva, S., and Palevsky, P. M., Prevention of contrast-induced AKI: A review of published trials and the design of the prevention of serious adverse events following angiography (PRESERVE) trial. Clin. J. Am. Soc. Nephrol. CJASN 8(9):1618–1631, 2013. doi:10.2215/CJN.11161012.CrossRefPubMedGoogle Scholar
  13. 13.
    James, M. T., Hobson, C. E., Darmon, M., Mohan, S., Hudson, D., Goldstein, S. L., Ronco, C., Kellum, J. A., Bagshaw, S. M., and Acute Dialysis Quality Initiative (ADQI) Consensus Group, Applications for detection of acute kidney injury using electronic medical records and clinical information systems: Workgroup statements from the 15(th) ADQI Consensus Conference. Can. J. Kidney Health Dis. 3:9, 2016. doi:10.1186/s40697-016-0100-2.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Colpaert, K., Hoste, E. A., Steurbaut, K., Benoit, D., Van Hoecke, S., De Turck, F., and Decruyenaere, J., Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class. Crit. Care Med. 40(4):1164–1170, 2012. doi:10.1097/CCM.0b013e3182387a6b.CrossRefPubMedGoogle Scholar
  15. 15.
    Ahmed, A., Vairavan, S., Akhoundi, A., Wilson, G., Chiofolo, C., Chbat, N., Cartin-Ceba, R., Li, G., and Kashani, K., Development and validation of electronic surveillance tool for acute kidney injury: A retrospective analysis. J. Crit. Care 30(5):988–993, 2015. doi:10.1016/j.jcrc.2015.05.007.CrossRefPubMedGoogle Scholar
  16. 16.
    Angus, D. C., Fusing randomized trials with big data: The key to self-learning health care systems? JAMA 314(8):767–768, 2015. doi:10.1001/jama.2015.7762.CrossRefPubMedGoogle Scholar
  17. 17.
    Semler, M. W., Rice, T. W., and Ehrenfeld, J. M., Leveraging clinical informatics in the conduct of clinical trials. J. Med. Syst. 39(10):112, 2015. doi:10.1007/s10916-015-0317-0.CrossRefPubMedGoogle Scholar
  18. 18.
    Zavada, J., Hoste, E., Cartin-Ceba, R., Calzavacca, P., Gajic, O., Clermont, G., Bellomo, R., Kellum, J. A., and for the AKI6 investigators, A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol. Dial. Transplant. 25(12):3911–3918, 2010. doi:10.1093/ndt/gfp766.CrossRefPubMedGoogle Scholar
  19. 19.
    Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F., Feldman, H. I., Kusek, J. W., Eggers, P., Van Lente, F., Greene, T., Coresh, J., and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration), A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150(9):604–612, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Aline, F., Wanderer, J. P., and Ehrenfeld, J. M., Managing the impact of the ICD-10 transition on a data warehouse. J. Med. Syst. 40(3):57, 2016. doi:10.1007/s10916-015-0418-9.CrossRefPubMedGoogle Scholar
  21. 21.
    Siew, E. D., Basu, R. K., Wunsch, H., Shaw, A. D., Goldstein, S. L., Ronco, C., Kellum, J. A., Bagshaw, S. M., and 15th ADQI Consensus Group, Optimizing administrative datasets to examine acute kidney injury in the era of big data: Workgroup statement from the 15(th) ADQI Consensus Conference. Can. J. Kidney Health Dis. 3:12, 2016. doi:10.1186/s40697-016-0098-5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Haase, M., Bellomo, R., Albert, C., Vanpoucke, G., Thomas, G., Laroy, W., Verleysen, K., Kropf, S., Kuppe, H., Hetzer, R., and Haase-Fielitz, A., The identification of three novel biomarkers of major adverse kidney events. Biomark. Med. 8(10):1207–1217, 2014. doi:10.2217/bmm.14.90.CrossRefPubMedGoogle Scholar
  23. 23.
    Mehta, R., Bihorac, A., Selby, N. M., Quan, H., Goldstein, S. L., Kellum, J. A., Ronco, C., Bagshaw, S. M., and Acute Dialysis Quality Initiative (ADQI) Consensus Group, Establishing a continuum of acute kidney injury - tracing AKI using data source linkage and long-term follow-up: Workgroup Statements from the 15th ADQI Consensus Conference. Can. J. Kidney Health Dis. 3:13, 2016. doi:10.1186/s40697-016-0102-0.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bivet, F. G., Nonuse of RIFLE classification urine output criteria: Biases for acute kidney injury biomarkers performance assessment? Crit. Care Med. 40(5):1692, 2012. doi:10.1097/CCM.0b013e318246b72a. author reply 1692-1693.CrossRefPubMedGoogle Scholar
  25. 25.
    Dewitte, A., Joannès-Boyau, O., Sidobre, C., Fleureau, C., Bats, M.-L., Derache, P., Leuillet, S., Ripoche, J., Combe, C., and Ouattara, A., Kinetic eGFR and novel AKI biomarkers to predict renal recovery. Clin. J. Am. Soc. Nephrol. CJASN 10(11):1900–1910, 2015. doi:10.2215/CJN.12651214.CrossRefPubMedGoogle Scholar
  26. 26.
    Chawla, L. S., Amdur, R. L., Shaw, A. D., Faselis, C., Palant, C. E., and Kimmel, P. L., Association between AKI and long-term renal and cardiovascular outcomes in United States veterans. Clin. J. Am. Soc. Nephrol. CJASN 9(3):448–456, 2014. doi:10.2215/CJN.02440213.CrossRefPubMedGoogle Scholar
  27. 27.
    Kashani, K., and Herasevich, V., Sniffing out acute kidney injury in the ICU: Do we have the tools? Curr. Opin. Crit. Care 19(6):531–536, 2013. doi:10.1097/MCC.0000000000000024.CrossRefPubMedGoogle Scholar
  28. 28.
    Flynn, N., and Dawnay, A., A simple electronic alert for acute kidney injury. Ann. Clin. Biochem. 52(Pt 2):206–212, 2015. doi:10.1177/0004563214534832.CrossRefPubMedGoogle Scholar
  29. 29.
    Wilson, F. P., Shashaty, M., Testani, J., Aqeel, I., Borovskiy, Y., Ellenberg, S. S., Feldman, H. I., Fernandez, H., Gitelman, Y., Lin, J., Negoianu, D., Parikh, C. R., Reese, P. P., Urbani, R., and Fuchs, B., Automated, electronic alerts for acute kidney injury: A single-blind, parallel-group, randomised controlled trial. Lancet Lond. Engl. 385(9981):1966–1974, 2015. doi:10.1016/S0140-6736(15)60266-5.CrossRefGoogle Scholar
  30. 30.
    Vlasschaert, M. E. O., Bejaimal, S. A. D., Hackam, D. G., Quinn, R., Cuerden, M. S., Oliver, M. J., Iansavichus, A., Sultan, N., Mills, A., and Garg, A. X., Validity of administrative database coding for kidney disease: A systematic review. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 57(1):29–43, 2011. doi:10.1053/j.ajkd.2010.08.031.CrossRefGoogle Scholar
  31. 31.
    Grams, M. E., Waikar, S. S., MacMahon, B., Whelton, S., Ballew, S. H., and Coresh, J., Performance and limitations of administrative data in the identification of AKI. Clin. J. Am. Soc. Nephrol. CJASN 9(4):682–689, 2014. doi:10.2215/CJN.07650713.CrossRefPubMedGoogle Scholar
  32. 32.
    Siew, E. D., Ikizler, T. A., Matheny, M. E., Shi, Y., Schildcrout, J. S., Danciu, I., Dwyer, J. P., Srichai, M., Hung, A. M., Smith, J. P., and Peterson, J. F., Estimating baseline kidney function in hospitalized patients with impaired kidney function. Clin. J. Am. Soc. Nephrol. CJASN 7(5):712–719, 2012. doi:10.2215/CJN.10821011.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Matthew W. Semler
    • 1
  • Todd W. Rice
    • 1
  • Andrew D. Shaw
    • 2
  • Edward D. Siew
    • 3
  • Wesley H. Self
    • 4
  • Avinash B. Kumar
    • 2
  • Daniel W. Byrne
    • 5
  • Jesse M. Ehrenfeld
    • 2
    • 6
  • Jonathan P. Wanderer
    • 2
    • 6
  1. 1.Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of AnesthesiologyVanderbilt University Medical CenterNashvilleUSA
  3. 3.Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI (VIP-AKI)Vanderbilt University Medical CenterNashvilleUSA
  4. 4.Department of Emergency MedicineVanderbilt University Medical CenterNashvilleUSA
  5. 5.Department of BiostatisticsVanderbilt University Medical CenterNashvilleUSA
  6. 6.Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations