Forecasting the Emergency Department Patients Flow

  • Mohamed Afilal
  • Farouk Yalaoui
  • Frédéric Dugardin
  • Lionel Amodeo
  • David Laplanche
  • Philippe Blua
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement


Emergency department (ED) have become the patient’s main point of entrance in modern hospitals causing it frequent overcrowding, thus hospital managers are increasingly paying attention to the ED in order to provide better quality service for patients. One of the key elements for a good management strategy is demand forecasting. In this case, forecasting patients flow, which will help decision makers to optimize human (doctors, nurses…) and material(beds, boxs…) resources allocation. The main interest of this research is forecasting daily attendance at an emergency department. The study was conducted on the Emergency Department of Troyes city hospital center, France, in which we propose a new practical ED patients classification that consolidate the CCMU and GEMSA categories into one category and innovative time-series based models to forecast long and short term daily attendance. The models we developed for this case study shows very good performances (up to 91,24 % for the annual Total flow forecast) and robustness to epidemic periods.


Emergency department flow Forecasting Patient classification Time series 


  1. 1.
    Products - Data Briefs - Number 102 - August 2012.
  2. 2.
    Aboagye-Sarfo, P., Mai, Q., Sanfilippo, F.M., Preen, D.B., Stewart, L.M., Fatovich, D.M., A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia 57:62–73.Google Scholar
  3. 3.
    Abraham, G., Byrnes, G., Bain, C., Short-Term Forecasting of emergency inpatient flow. IEEE Trans. Inf. Technol. Biomed. 13(3):380–388, 2009.CrossRefPubMedGoogle Scholar
  4. 4.
    Ajmi, I., Zgaya, H., Hammadi, S.: Optimized workflow for the healthcare logistic: Case of the pediatric emergency department. In: Mohamad, M.S., Nanni, L., Rocha, M.P., Fdez-Riverola, F. (Eds.) 7th International Conference on Practical Applications of Computational Biology & Bioinformatics, no. 222 in Advances in Intelligent Systems and Computing, pp. 77–84. Springer International Publishing (2013)Google Scholar
  5. 5.
    Atallah, H.Y., and Lee, E.K.: Modeling and Optimizing Emergency Department WorkflowGoogle Scholar
  6. 6.
    Bergs, J., Heerinckx, P., Verelst, S., Knowing what to expect, forecasting monthly emergency department visits: a time-series analysis. Int. Emerg. Nurs. 22(2):112–115, 2014.CrossRefPubMedGoogle Scholar
  7. 7.
    Bouleux, G., Marcon, E., Mory, O., Early index for detection of pediatric emergency department crowding. IEEE Journal of Biomedical and Health Informatics PP(99):1–1 , 2014.Google Scholar
  8. 8.
    Box, G. E. P., and Jenkins, G. M., Time series analysis, forecasting and control. J. R. Stat. Soc. Series A (General) 134(3):450, 1971.CrossRefGoogle Scholar
  9. 9.
    Boyle, A., Beniuk, K., Higginson, I., Atkinson, P., Emergency department crowding: Time for interventions and policy evaluations. Emergency Medicine International 2012:e838,610, 2012.CrossRefGoogle Scholar
  10. 10.
    Boyle, J., Wallis, M., Jessup, M., Crilly, J., Lind, J., Miller, P., Fitzgerald, G.: Regression forecasting of patient admission data. In: 30th annual international conference of the IEEE engineering in medicine and biology society, 2008. EMBS 2008, pp. 3819–3822 (2008)Google Scholar
  11. 11.
    Brockwell, P.J., and Davis, R.A. (eds.): Introduction to Time Series and Forecasting. Springer Texts in Statistics. Springer, New York (2002)Google Scholar
  12. 12.
  13. 13.
    Cooke, M., Wilson, S., Halsall, J., Roalfe, A., Total time in English accident and emergency departments is related to bed occupancy. Emerg. Med. J. : EMJ 21(5):575–576, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Coskun, N., and Erol, R., An Optimization Model for Locating and Sizing Emergency Medical Service Stations. J. Med. Syst. 34(1):43–49, 2008. doi: Scholar
  15. 15.
    De Gooijer, J.G., and Hyndman, R.J., 25 years of time series forecasting. Int. J. Forecast. 22(3):443–473, 2006.CrossRefGoogle Scholar
  16. 16.
    Derlet, R., Richards, J., Kravitz, R., Frequent overcrowding in U.S. emergency departments. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 8(2):151–155, 2001.CrossRefGoogle Scholar
  17. 17.
    Ekström, A., Kurland, L., Farrokhnia, N., Castrén, M., Nordberg, M., Forecasting emergency department visits using internet data. Ann. Emerg. Med. 65(4):436–442.e1, 2015.CrossRefPubMedGoogle Scholar
  18. 18.
    Findley, D.F., Monsell, B.C., Bell, W.R., Otto, M.C., Chen, B.C., New capabilities and methods of the x-12-ARIMA Seasonal-Adjustment program. J. Bus. Econ. Stat. 16(2):127, 1998.Google Scholar
  19. 19.
    Foley, M., Kifaieh, N., Mallon, W. K., Financial impact of emergency department crowding. Western Journal of Emergency Medicine 12(2):192–197, 2011.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Gendreau, M., Ferland, J., Gendron, B., Hail, N., Jaumard, B., Lapierre, S., Pesant, G., Soriano, P.: Physician scheduling in emergency rooms. In: Burke, E.K., and Rudová, H. (Eds.) Practice and Theory of Automated Timetabling VI, no. 3867 in Lecture Notes in Computer Science, pp. 53–66. Springer, Berlin (2007)Google Scholar
  21. 21.
    Han, J.H., Zhou, C., France, D.J., Zhong, S., Jones, I., Storrow, A.B., Aronsky, D., The effect of emergency department expansion on emergency department overcrowding. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 14(4):338–343, 2007.CrossRefGoogle Scholar
  22. 22.
    Headrick, R.W., and Morgan, G.W., Resource allocation in multifacility Emergency Medical Service Systems. J. Med. Syst. 12(3):121–128, 1988.CrossRefPubMedGoogle Scholar
  23. 23.
    Jalalpour, M., Gel, Y., Levin, S., Forecasting demand for health services: Development of a publicly available toolbox 5:1–9.Google Scholar
  24. 24.
    Jones, S.A., Joy, M.P., Pearson, J., Forecasting demand of emergency care. Health Care Manag. Sci. 5 (4):297–305, 2002.CrossRefPubMedGoogle Scholar
  25. 25.
    Jones, S.S., Evans, R.S., Allen, T.L., Thomas, A., Haug, P.J., Welch, S.J., Snow, G.L., A multivariate time series approach to modeling and forecasting demand in the emergency department. J. Biomed. Inform. 42(1):123–139, 2009.CrossRefPubMedGoogle Scholar
  26. 26.
    Kadri, F., Harrou, F., Chaabane, S., Tahon, C., Time series modelling and forecasting of emergency department overcrowding. J. Med. Syst. 38(9):1–20, 2014.CrossRefGoogle Scholar
  27. 27.
    Kwak, N.K., and Lee, C., A linear goal programming model for human resource allocation in a health-care organization. J. Med. Syst. 21(3):129–140, 1997.CrossRefPubMedGoogle Scholar
  28. 28.
    Lin, B.Y.J., Hsu, C.P.C., Chao, M.C., Luh, S.P., Hung, S.W., Breen, G.M., Physician and Nurse Job Climates in Hospital-Based Emergency Departments in Taiwan: Management and Implications. J. Med. Syst. 32(4):269–281, 2008. doi: 10.1007/s10916-008-9132-1.CrossRefPubMedGoogle Scholar
  29. 29.
    Luo, L., Luo, Y., You, Y., Cheng, Y., Shi, Y., Gong, R., A MIP Model for Rolling Horizon Surgery Scheduling. J. Med. Syst. 40(5):1–7, 2016. doi: 10.1007/s10916-016-0490-9.CrossRefGoogle Scholar
  30. 30.
    Mielczarek, B.: Estimating future demand for hospital emergency services at the regional level. In: Simulation conference (WSC), 2013 winter, pp. 2386–2397 (2013)Google Scholar
  31. 31.
    Milner, P.C., Forecasting the demand on accident and emergency departments in health districts in the Trent region. Stat. Med. 7(10):1061–1072, 1988.CrossRefPubMedGoogle Scholar
  32. 32.
    Mohammadi, R., Fatemi Ghomi, S.M.T., Zeinali, F., A new hybrid evolutionary based RBF networks method for forecasting time series: a case study of forecasting emergency supply demand time series. Eng. Appl. Artif. Intel. 36:204–214, 2014.CrossRefGoogle Scholar
  33. 33.
    Rydman, R.J., Tannebaum, R.D., Zalenski, R.J., An evaluation of Hospital Emergency Department (HED) adherence to universal precautions. J. Med. Syst. 18(4):207–220, 1994.CrossRefPubMedGoogle Scholar
  34. 34.
    Schull, M.J., Mamdani, M.M., Fang, J., Influenza and emergency department utilization by elders. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 12(4):338–344, 2005.CrossRefGoogle Scholar
  35. 35.
    Shi, H.Y., Tsai, J.T., Ho, W.H., Lee, K.T.: Autoregressive integrated moving average model for long-term prediction of emergency department revenue and visitor volume. In: 2011 International conference on machine learning and cybernetics (ICMLC), vol. 3, pp. 979–982 (2011)Google Scholar
  36. 36.
    Stout, W.A., and Tawney, J.B.: An Excel forecasting model to aid in decision making that affects hospital resource/bed utilization - hospital capability to admit emergency room patients. In: 2005 IEEE Systems and information engineering design symposium, pp. 222–228 (2005)Google Scholar
  37. 37.
    Sun, B.C., Hsia, R.Y., Weiss, R.E., Zingmond, D., Liang, L.J., Han, W., McCreath, H., Asch, S. M., Effect of emergency department crowding on outcomes of admitted patients. Ann. Emerg. Med. 61 (6):605–611.e6, 2013.CrossRefPubMedGoogle Scholar
  38. 38.
    Sun, Y., Heng, B.H., Seow, Y.T., Seow, E., Forecasting daily attendances at an emergency department to aid resource planning. BMC Emerg. Med. 9(1):1–9, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Trzeciak, S., and Rivers, E.P., Emergency department overcrowding in the United States: an emerging threat to patient safety and public health. Emerg. Med. J. EMJ 20(5):402–405 , 2003.CrossRefPubMedGoogle Scholar
  40. 40.
    Walker, G., On periodicity in series of related terms. Proceedings of the royal society of london a: Mathematical. Phys. Eng. Sci. 131(818):518–532, 1931.CrossRefGoogle Scholar
  41. 41.
    Wullink, G., Houdenhoven, M., Hans, E.W., Oostrum, J.M., Lans, M., Kazemier, G., Closing emergency operating rooms improves efficiency. J. Med. Syst. 31(6):543–546 , 2007.CrossRefPubMedGoogle Scholar
  42. 42.
    Yalaoui, A., Chehade, H., Yalaoui, F., Amodeo, L., Optimization of Logistics. Hoboken: Wiley, 2012.CrossRefGoogle Scholar
  43. 43.
    Yu, D., Blocker, R.C., Sir, M.Y., Hallbeck, M.S., Hellmich, T.R., Cohen, T., Nestler, D.M., Pasupathy, K.S., Intelligent Emergency Department: Validation of Sociometers to Study Workload. J. Med. Syst. 40(3):1–12, 2015. doi: 10.1007/s10916-015-0405-1  10.1007/s10916-015-0405-1.Google Scholar
  44. 44.
    Yule, G.U., On a method of investigating periodicities in disturbed series, with special reference to wolfer’s sunspot numbers. Physical and Engineering Sciences Philosophical transactions of the royal society of london a: Mathematical 226(636–646):267–298, 1927.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mohamed Afilal
    • 1
  • Farouk Yalaoui
    • 1
  • Frédéric Dugardin
    • 1
  • Lionel Amodeo
    • 1
  • David Laplanche
    • 2
  • Philippe Blua
    • 2
  1. 1.Institut Charles Delaunay, LOSIUniversité de Technologie de Troyes UMR 6281, CNRSTroyesFrance
  2. 2.Département d’Information MédicaleCentre Hospitalier de TroyesTroyesFrance

Personalised recommendations