Analysis of the process of representing clinical statements for decision-support applications: a comparison of openEHR archetypes and HL7 virtual medical record

  • A. González-Ferrer
  • M. Peleg
  • M. Marcos
  • J. A. Maldonado
Transactional Processing Systems
Part of the following topical collections:
  1. Transactional Processing Systems


Delivering patient-specific decision-support based on computer-interpretable guidelines (CIGs) requires mapping CIG clinical statements (data items, clinical recommendations) into patients’ data. This is most effectively done via intermediate data schemas, which enable querying the data according to the semantics of a shared standard intermediate schema. This study aims to evaluate the use of HL7 virtual medical record (vMR) and openEHR archetypes as intermediate schemas for capturing clinical statements from CIGs that are mappable to electronic health records (EHRs) containing patient data and patient-specific recommendations. Using qualitative research methods, we analyzed the encoding of ten representative clinical statements taken from two CIGs used in real decision-support systems into two health information models (openEHR archetypes and HL7 vMR instances) by four experienced informaticians. Discussion among the modelers about each case study example greatly increased our understanding of the capabilities of these standards, which we share in this educational paper. Differing in content and structure, the openEHR archetypes were found to contain a greater level of representational detail and structure while the vMR representations took fewer steps to complete. The use of openEHR in the encoding of CIG clinical statements could potentially facilitate applications other than decision-support, including intelligent data analysis and integration of additional properties of data items from existing EHRs. On the other hand, due to their smaller size and fewer details, the use of vMR potentially supports quicker mapping of EHR data into clinical statements.


Clinical decision-support systems Clinical guidelines Computer-interpretable guidelines Data integration openEHR archetypes HL7 virtual Medical Record (vMR) 



This study was partially funded by the European Commission 7th Framework Program, grant #287811. It has also been supported by the Spanish Ministry of Economy and Competitiveness and the EU FEDER programme through project TIN2014-53749-C2-1-R and grant PTQ-12-05620.

Supplementary material

10916_2016_524_MOESM1_ESM.docx (61 kb)
10916_2016_524_MOESM2_ESM.docx (51 kb)


  1. 1.
    Peleg, M., Computer-interpretable clinical guidelines: a methodological review. J. Biomed. Inform. 46:744–763, 2013.CrossRefPubMedGoogle Scholar
  2. 2.
    Peleg, M., Shahar, Y., and Quaglini, S., Making healthcare more accessible, better, faster, and cheaper: the MobiGuide Project. Eur. J. e-Pract. 20:5–20, 2014.Google Scholar
  3. 3.
    ISO (2011) ISO 18308:2011. Health Informatics—Requirements for an Electronic Health Record Architecture. Accessed 29 Dec 2015
  4. 4.
    Lenzerini M., Data integration: a theoretical perspective. In: Popa L (Ed). Proc. 21st ACM SIGMOD-SIGACT-SIGART Symp. Princ. database Syst. pp 233–246, 2002.Google Scholar
  5. 5.
    Peleg, M., Keren, S., and Denekamp, Y., Mapping computerized clinical guidelines to electronic medical records: knowledge-data ontological mapper (KDOM). J. Biomed. Inform. 41:180–201, 2008.CrossRefPubMedGoogle Scholar
  6. 6.
    Marcos, M., Maldonado, J. A., Martínez-Salvador, B., Boscá, D., and Robles, M., Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility. J. Biomed. Inform. 46:676–689, 2013.CrossRefPubMedGoogle Scholar
  7. 7.
    Friedman M, Levy AY, Millstein TD, et al. Navigational plans for data integration. In: Hendler J, Subramanian D (Eds). Proc. 16th Natl. Conf. Artif. Intell. AAAI Press, Orlando, Florida, pp 67–73, 1999.Google Scholar
  8. 8.
    Parker, C. G., Ms, S. W. T., Huff, S. M,. Detailed clinical models for sharable, executable guidelines. In: Fieschi M, Coiera E, Li Y-CJ (Eds). Proc. 11th World Congr. Med. Informatics. IOS Press, San Francisco (USA), pp 145–148, 2004Google Scholar
  9. 9.
    Tao, C., Jiang, G., Oniki, T. A., Freimuth, R. R., Zhu, Q., Sharma, D., Pathak, J., Huff, S. M., and Chute, C. G., A semantic-web oriented representation of the clinical element model for secondary use of electronic health records data. J. Am. Med. Informa. Assoc. 20:554–562, 2013.CrossRefGoogle Scholar
  10. 10.
    German, E., Leibowitz, A., and Shahar, Y., An architecture for linking medical decision-support applications to clinical databases and its evaluation. J. Biomed. Inf. 42:203–218, 2009.CrossRefGoogle Scholar
  11. 11.
    Cho, I., Kim, J., Kim, J. H., Kim, H. Y., and Kim, Y., Design and implementation of a standards-based interoperable clinical decision support architecture in the context of the Korean EHR. Int. J. Med. Inform. 79:611–622, 2010.CrossRefPubMedGoogle Scholar
  12. 12.
    Tu, S. W., Campbell, J. R., Glasgow, J., et al., The SAGE guideline model: achievements and overview. J. Am. Med. Informa. Assoc. 14:589–598, 2007.CrossRefGoogle Scholar
  13. 13.
    Health Level Seven (2014) HL7 Version 3 Standard: clinical decision support; Virtual Medical Record (vMR) Logical Model, Release 2. Accessed 14 Jan 2016.
  14. 14.
    Marcos, M., Maldonado, J., Martínez-Salvador, B., Moner, D., Boscá, D., and Robles, M., An archetype-based solution for the interoperability of computerised guidelines and electronic health records. In: Peleg, M., Lavrač, N., and Combi, C. (Eds.), Artif. Intell. Med. Springer, Bled, Slovenia, pp. 276–285, 2011.CrossRefGoogle Scholar
  15. 15.
    González-Ferrer, A., and Peleg, M., Understanding requirements of clinical data standards for developing interoperable knowledge-based DSS: a case study. Comput Stand Interfaces 42:125–136, 2015.CrossRefGoogle Scholar
  16. 16.
    González-Ferrer, A., Peleg, M., Verhees, B., Verlinden, J. M., Marcos, C., Data integration for clinical decision support based on openEHR archetypes and HL7 virtual medical record. In: Lenz R, Miksch S, Peleg M, Reichert M, Riaño D, ten Teije A (eds) Proc. BPM Jt. Work. ProHealth12/KR4HC12 (LNAI 7738). Springer, Tallinn, Estonia, pp 71–84, 2013Google Scholar
  17. 17.
    January, C. T., Wann, L. S., Alpert, J. S., et al., 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 64:e1–e76, 2014.CrossRefPubMedGoogle Scholar
  18. 18.
    Health NCC for W and C, Guidelines: management of diabetes from preconception to the postnatal period: summary of NICE guidance. BMJ Br. Med. J. 336:714, 2008.CrossRefGoogle Scholar
  19. 19.
    Lindberg, C., The Unified Medical Language System (UMLS) of the National Library of Medicine. J. Am. Med. Rec. Assoc. 61:40–42, 1990.PubMedGoogle Scholar
  20. 20.
    NLM (2009) SNOMED Clinical Terms (SNOMED CT). Accessed 14 Jan 2016.
  21. 21.
    Maldonado, J. A., Moner, D., Boscá, D., Fernández-Breis, J. T., Angulo, C., and Robles, M., LinkEHR-Ed: a multi-reference model archetype editor based on formal semantics. Int. J. Med. Inform. 78:559–570, 2009.CrossRefPubMedGoogle Scholar
  22. 22.
    von Alan, R. H., March, S. T., Park, J., and Ram, S., Design science in information systems research. MIS Q 28:75–105, 2004.Google Scholar
  23. 23.
    Fink, A., Kosecoff, J., Chassin, M., and Brook, R. H., Consensus methods: characteristics and guidelines for use. Am. J. Public Health 74:979–983, 1984.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Markwell, D., Sato, L., Cheetham, E., Representing clinical information using SNOMED clinical terms with different structural information models. In: Cornet R, Spackman K (Eds). Proc. Third Int. Conf. Knowl. Represent. Med. CEUR, Phoenix, pp 72–79, 2008.Google Scholar
  25. 25.
    Rector, A. L., Qamar, R., and Marley, T., Binding ontologies and coding systems to electronic health records and messages. Appl. Ontol. 4:51–69, 2009.Google Scholar
  26. 26.
    González-Ferrer, A., Peleg, M., Parimbelli, E., Shalom, E., Lagunar, C. M., Klebanov, G., Martínez-Sarriegui, I., Fung, N. L. S., Broens, T., Use of the virtual medical record data model for communication among components of a distributed decision-support system. In: Proc. 2nd IEEE Biomed. Heal. Informatics Int. Conf. IEEE Computer Society, Valencia, Spain, pp 526–530, 2014Google Scholar
  27. 27.
    Patel, V. L., Branch, T., Wang, E., Peleg, M., Boxwala, A., et al., Analysis of the process of encoding guidelines: a comparison of GLIF2 and GLIF3. Methods Inf. Med. 41:105–113, 2002.PubMedGoogle Scholar
  28. 28.
    Marcos, C., González-Ferrer, A., Peleg, M., and Cavero, C., Solving the interoperability challenge of a distributed complex patient guidance system: a data integrator based on HL7’s Virtual Medical Record standard. J. Am. Med. Assoc. 22:587–599, 2015.Google Scholar
  29. 29.
    Beale, T., ISO 18308 Conformance Statement release 1.0.1, 2006Google Scholar
  30. 30.
    Health Level Seven (2015) HL7 Version 3 Standard: Clinical Decision Support; Virtual Medical Record (vMR) Templates, Release 1. Accessed 14 Jan 2016.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. González-Ferrer
    • 1
  • M. Peleg
    • 2
  • M. Marcos
    • 3
  • J. A. Maldonado
    • 4
    • 5
  1. 1.Fundación de Investigación Biomédica, Hospital Clínico San CarlosInstituto de Investigación Sanitaria San Carlos (IdISSC)MadridSpain
  2. 2.Department of Information SystemsUniversity of HaifaHaifaIsrael
  3. 3.Department of Computer Engineering and ScienceUniversitat Jaume ICastellónSpain
  4. 4.Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones AvanzadasUniversitat Politècnica de ValènciaValenciaSpain
  5. 5.VeraTech for Health SLValenciaSpain

Personalised recommendations