Journal of Medical Systems

, 39:179 | Cite as

Computer-Aided Diagnosis of Parkinson’s Disease Using Enhanced Probabilistic Neural Network

  • Thomas J. Hirschauer
  • Hojjat AdeliEmail author
  • John A. Buford
Patient Facing Systems
Part of the following topical collections:
  1. Patient Facing Systems


Early and accurate diagnosis of Parkinson’s disease (PD) remains challenging. Neuropathological studies using brain bank specimens have estimated that a large percentages of clinical diagnoses of PD may be incorrect especially in the early stages. In this paper, a comprehensive computer model is presented for the diagnosis of PD based on motor, non-motor, and neuroimaging features using the recently-developed enhanced probabilistic neural network (EPNN). The model is tested for differentiating PD patients from those with scans without evidence of dopaminergic deficit (SWEDDs) using the Parkinson’s Progression Markers Initiative (PPMI) database, an observational, multi-center study designed to identify PD biomarkers for diagnosis and disease progression. The results are compared to four other commonly-used machine learning algorithms: the probabilistic neural network (PNN), support vector machine (SVM), k-nearest neighbors (k-NN) algorithm, and classification tree (CT). The EPNN had the highest classification accuracy at 92.5 % followed by the PNN (91.6 %), k-NN (90.8 %) and CT (90.2 %). The EPNN exhibited an accuracy of 98.6 % when classifying healthy control (HC) versus PD, higher than any previous studies.


Computer-aided diagnosis Parkinson’s disease Enhanced probabilistic neural networks 



PPMI – a public-private partnership – is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including AbbVie, Avid, Biogen, Bristol-Myers Squibb, Covance, GE Healthcare, Genentech, GlaxoSmithKline, Eli Lilly and Company, Lundbeck, Merck, Meso Scale Discovery, Pfizer, Piramal Imaging, Roche, Servier, and UCB.


  1. 1.
    Acharya, U. R., Vidya, S., Bhat, S., Adeli, H., and Adeli, A., Computer-aided diagnosis of alcoholism-related EEG signals. Epilepsy Behav. 41:257–263, 2014.CrossRefPubMedGoogle Scholar
  2. 2.
    Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., Alzheimer’s disease and models of computation: Imaging, classification, and neural models. J. Alzheimers Dis. 7(3):187–199, 2005.PubMedGoogle Scholar
  3. 3.
    Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., Alzheimer’s disease: Models of computation and analysis of EEGs. Clin. EEG Neurosci. 36(3):131–140, 2005.CrossRefPubMedGoogle Scholar
  4. 4.
    Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54(2):205–211, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N., A Spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Neurosci. Lett. 444(2):190–194, 2008.CrossRefPubMedGoogle Scholar
  6. 6.
    Adeli, H., and Hung, S. L., Machine learning - neural networks, genetic algorithms, and fuzzy sets. Wiley, New York, 1995.Google Scholar
  7. 7.
    Aerts, M. B., Esselink, R. A., Post, B., van de Warrensburg, P. B., and Bloem, B. R., Improving the diagnostic accuracy in parkinsonism: A three-pronged approach. Pract. Neurol. 12(2):77–87, 2012.CrossRefPubMedGoogle Scholar
  8. 8.
    Ahmadlou, A., Adeli, H., and Adeli, A., Fractality and a wavelet-Chao methodology for EEG-based diagnosis of Alzheimer’s disease. Alzheimer Dis. Assoc. Disord. 25(1):85–92, 2011.CrossRefPubMedGoogle Scholar
  9. 9.
    Ahmadlou, M., and Adeli, H., Enhanced probabilistic neural networks with local decision circles: A robust classifier. Integr. Comput. Aided. Eng. 17:197–210, 2010.Google Scholar
  10. 10.
    Ahmadlou, M., and Adeli, H., Wavelet-synchronization methodology: A new approach for EEG-based diagnosis of ADHD. Clin. EEG Neurosci. 41(1):1–10, 2010.CrossRefPubMedGoogle Scholar
  11. 11.
    Ahmadlou, M., Adeli, H., and Adeli, A., Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J. Clin. Neurophysiol. 7(5):328–333, 2010.CrossRefGoogle Scholar
  12. 12.
    Ahmadlou, M., Adeli, H., and Adeli, A., Fractality analysis of frontal brain in major depressive disorder. Int. J. Psychophysiol. 85(2):206–211, 2012.CrossRefPubMedGoogle Scholar
  13. 13.
    Ahmadlou, M., Adeli, H., and Adeli, A., Graph theoretical analysis of organization of functional brain networks in ADHD. Clin. EEG Neurosci. 43(1):5–13, 2012.CrossRefPubMedGoogle Scholar
  14. 14.
    Ahmadlou, M., Adeli, H., and Adeli, A., Spatio-Temporal Analysis of Relative Convergence (STARC) of EEGs reveals differences between brain dynamics of depressive women and men. Clin. EEG Neurosci. 44:175–181, 2013.CrossRefPubMedGoogle Scholar
  15. 15.
    Ahmadlou, M., Adeli, A., Bajo, R., and Adeli, H., Complexity of functional connectivity networks in mild cognitive impairment patients during a working memory task. Clin. Neurophysiol. 125(4):694–702, 2013.CrossRefGoogle Scholar
  16. 16.
    Alexandridis, A., Evolving RBF neural networks for adaptive soft-sensor design. Int. J. Neural Syst. 23(6):1350029, 2013 (14 pages).CrossRefPubMedGoogle Scholar
  17. 17.
    Babu, G. S., Suresh, S., and Mahanand, B. S., A novel PBL-McRBFN-RFE approach for identification of critical brain regions responsible for Parkinson’s disease. Expert Syst. Appl. 41(2):478–488, 2014.CrossRefGoogle Scholar
  18. 18.
    Badawy, R. A. B., Vogrin, S. J., Lai, A., and Cook, M. J., On the midway to epilepsy; Are cortical excitability measures in patients with isolated seizures normal? Int. J. Neural Syst. 24(2):1430002, 2014 (7 pages).CrossRefPubMedGoogle Scholar
  19. 19.
    Bauer, P. R., Kalitzin, S., Zijlmans, M., Sander, J. W., and Visser, G., Cortical excitability as a clinical marker in epilepsy: A review of the clinical application of Transcranial Magnetic Stimulation. Int. J. Neural Syst. 24(2):1430001, 2014 (21 pages).CrossRefPubMedGoogle Scholar
  20. 20.
    Butcher, J. B., Day, C. R., Austin, J. C., Haycock, P. W., Verstraeten, D., and Schrauwen, B., Defect detection in reinforced concrete using random neural architectures. Comput. Aided Civ. Infrastruct. Eng. 29(3):191–20, 2014.CrossRefGoogle Scholar
  21. 21.
    Castillo, E., Peteiro-Barral, D., Guijarro Berdinas, B., and Fontenla-Romero, O., Distributed one-class support vector machine. Int. J. Neural Syst. 25:7, 2015 (17 pages).CrossRefGoogle Scholar
  22. 22.
    Davie, C. A., A review of Parkinson’s disease. Br. Med. Bull. 86(1):109–127, 2008.CrossRefPubMedGoogle Scholar
  23. 23.
    De Dombal, F. T., Leaper, D. J., Staniland, J. R., McCann, A. P., and Horrocks, J. C., Computer-aided diagnosis of acute abdominal pain. Br. Med. J. 2(5804):9–13, 1972.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    De Lau, L. M., and Breteler, M. M., Epidemiology of Parkinson’s disease. Lancet Neurol. 5(6):525–535, 2006.CrossRefPubMedGoogle Scholar
  25. 25.
    De Rosa, A., Carducci, C., Carducci, C., Peluso, S., Lieto, M., Mazzella, A., Saccà, F., Brescia Morra, V., Pappatà, S., Leuzzi, V., and De Michele, G., Screening for dopa-responsive dystonia in patients with Scans Without Evidence of Dopaminergic Deficiency (SWEDD). J. Neurol. 261(11):2204–2208, 2014.CrossRefPubMedGoogle Scholar
  26. 26.
    Doty, R. L., Shaman, P., Kimmelman, C. P., and Dann, M. S., University of Pennsylvania smell identification test: A rapid quantitative olfactory function test for the clinic. Laryngoscope 94:176–178, 1984.CrossRefPubMedGoogle Scholar
  27. 27.
    Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., Poewe, W., LaPelle, N., and Movement Disorder Society UPDRS Revision Task Force, Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23(15):2129–2170, 2008.CrossRefPubMedGoogle Scholar
  28. 28.
    Illan, I. A., Gorrz, J. M., Ramirez, J., Segovia, F., Jimenez-Hoyuela, J. M., and Ortega Lozano, S. J., Automatic assistance to Parkinson’s disease diagnosis in DaTSCAN SPECT imaging. Med. Phys. 39(10):5971–5980, 2012.CrossRefPubMedGoogle Scholar
  29. 29.
    Jankovic, J., Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4):368–376, 2008.CrossRefPubMedGoogle Scholar
  30. 30.
    Kwon, M., Kavuri, S., and Lee, M., Action-perception cycle learning for incremental emotion recognition in a movie clip using 3D fuzzy GIST based on visual and EEG signals. Integr. Comput. Aided Eng. 21(3):295–310, 2014.Google Scholar
  31. 31.
    Lee, M. J., Kim, S. L., Lyoo, C. H., and Lee, M. S., Kinematic analysis in patients with Parkinson’s disease and SWEDD. J Park. Dis. 4(3):421–430, 2014.Google Scholar
  32. 32.
    Li, D., Xu, L., Goodman, E., Xu, Y., and Wu, Y., Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking. Integr. Comput. Aided Eng. 20(3):201–216, 2013.Google Scholar
  33. 33.
    Lin, L. C., Ouyang, C. S., Chiang, C. T., Yang, R. C., Wu, R. C., and Wu, H. C., Early prediction of medication refractoriness in children with idiopathic epilepsy based on scalp EEG analysis. Int. J. Neural Syst. 24(7):1450023, 2014 (16 pages).CrossRefPubMedGoogle Scholar
  34. 34.
    Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., Coffey, C., and Taylor, P., The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 95(4):629–635, 2011.CrossRefGoogle Scholar
  35. 35.
    Liu, C., Wang, J., Chen, Y. Y., Deng, B., Wei, X. L., and Li, H. Y., Closed-loop control of the thalamocortical relay neuron’s Parkinsonian state based on slow variable. Int. J. Neural Syst. 23(4):1350017, 2013 (13 pages).CrossRefPubMedGoogle Scholar
  36. 36.
    Luo, C., Zhang, Y., Cao, W., Huang, Y., Yang, F., Wang, J., Tu, S., Wang, X., and Yao, D., Altered Structural and functional feature of striatocortical circuit in benign epilepsy with cectrotemporal spikes. Int. J. Neural Syst. 25(6):1550027, 2015 (13 pages).CrossRefPubMedGoogle Scholar
  37. 37.
    Martinez-Murcia, F. J., Gorriz, J. M., Ramirez, J., Illan, I. A., and The Parkinson’s Progression Markers Initiative, Automated Detection of Parkinsonism Using Significance Measures and Component Analysis in DatSCAN imaging. Neurocomputing 126:58–70, 2014.CrossRefGoogle Scholar
  38. 38.
    Mian, O. S., Schneider, S. A., Schwingenschuh, P., Bhatia, K. P., and Day, B. L., Gait in SWEDDs patients: comparison with Parkinson’s disease patients and healthy controls. Mov. Disord. 26(7):1266–1273, 2011.CrossRefPubMedGoogle Scholar
  39. 39.
    Parazzini, M., Fiocchi, S., Liorni, I., Priori, A., and Ravazzani, P., Computational modelling of transcranial direct current stimulation in the child brain: Implications for the treatment of refractory childhood focal epilepsy. Int. J. Neural Syst. 24(2):1430006, 2014 (10 pages).CrossRefPubMedGoogle Scholar
  40. 40.
    Prashanth, R., Roy, S. D., Mandal, P. K., and Ghosh, S., Automatic classification and prediction models for early Parkinson’s disease diagnosis from SPECT imaging. Expert Syst. Appl. 41:3333–3342, 2014.CrossRefGoogle Scholar
  41. 41.
    Salvatore, C., Cerasa, A., Augimeri, A., Quattrone, A., Castiglioni, I., Gallivanone, F., Gilardi, M. C., and Morelli, M., Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy. J. Neurosci. Methods 222:230–237, 2014.CrossRefPubMedGoogle Scholar
  42. 42.
    Sankari, Z., and Adeli, H., Probabilistic neural networks for diagnosis of Alzheimer’s disease using conventional and wavelet coherence. J. Neurosci. Methods 197(1):165–170, 2011.CrossRefPubMedGoogle Scholar
  43. 43.
    Sankari, Z., Adeli, H., and Adeli, A., Intrahemispheric, interhemispheric and distal EEG coherence in Alzheimer’s disease. Clin. Neurophysiol. 122(5):897–906, 2011.CrossRefPubMedGoogle Scholar
  44. 44.
    Sankari, Z., Adeli, H., and Adeli, A., Wavelet coherence model for diagnosis of Alzheimer’s disease. Clin. EEG Neurosc. 43(3):268–278, 2012.CrossRefGoogle Scholar
  45. 45.
    Schneider, S. A., Edwards, M. J., Mir, P., Cordivari, C., Hooker, J., Dickson, J., Quinn, N., and Bhatia, K. P., Patients with adult-onset dystonic tremor resembling parkinsonian tremor have scans without evidence of dopaminergic deficit (SWEDDs). Mov. Disord. 22(15):2210–2215, 2007.CrossRefPubMedGoogle Scholar
  46. 46.
    Schwingenschuh, P., Ruge, D., Edwards, M. J., Terranova, C., Katschnig, P., Carrillo, F., Silveira-Moriyama, L., and Bhatia, K. P., Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson’s disease: a clinical and electrophysiological study. Mov. Disord. 25(5):560–569, 2010.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Siddique, N., and Adeli, H., Computational intelligence - synergies of fuzzy logic, neural networks and evolutionary computing. Wiley, West Sussex, 2013.CrossRefGoogle Scholar
  48. 48.
    Silveira-Moriyama, L., Schwingenschuh, P., O’Donnell, A., Schneider, S. A., Mir, P., Carrillo, F., Terranova, C., Petrie, A., Grosset, D. G., Quinn, N. P., Bhatia, K. P., and Lees, A. J., Olfaction in patients with suspected Parkinsonism and scans without evidence of dopaminergic deficit (SWEDDs). J. Neurol. Neurosurg. Psychiatry 80(7):744–748, 2009.CrossRefPubMedGoogle Scholar
  49. 49.
    Specht, D. F., Probabilistic neural networks. Neural Netw. 3:109–118, 1990.CrossRefGoogle Scholar
  50. 50.
    Su, F., Wang, J., Deng, B., Wei, X. L., Chen, Y. Y., and Li, H. Y., Adaptive control of Parkinson’s state based on a nonlinear computational model with unknown parameters. Int. J. Neural Syst. 25(1):1450030, 2015 (13 pages).CrossRefPubMedGoogle Scholar
  51. 51.
    Story, B. A., and Fry, G. T., A structural impairment detection system using competitive arrays of artificial neural networks. Comput. Aided Civ. Infrastruct. Eng. 29(3):180–190, 2014.CrossRefGoogle Scholar
  52. 52.
    Su, F., Wang, J., Deng, B., Wei, X. L., Chen, Y. Y., and Li, H. Y., Adaptive control of Parkinson’s state based on a nonlinear computational model with unknown parameters. Int. J. Neural Syst. 25(1):1450030, 2015 (13 pages).CrossRefPubMedGoogle Scholar
  53. 53.
    Tolosa, E., Wenning, G., and Poewe, W., The diagnosis of Parkinson’s disease. Lancet Neurol. 5(1):75–86, 2006.CrossRefPubMedGoogle Scholar
  54. 54.
    Visser, M., Marinus, J., Stiggelbout, A. M., and Van Hilten, J. J., Assessment of autonomic dysfunction in Parkinson’s disease: The SCOPA-AUT. Mov. Disord. 19(11):1306–1312, 2004.CrossRefPubMedGoogle Scholar
  55. 55.
    Yang, H. J., Kim, Y. E., Yun, J. Y., Ehm, G., Kim, H. J., and Jeon, B. S., Comparison of sleep and other non-motor symptoms between SWEDDs patients and de novo Parkinson’s disease patients. Parkinsonism Relat. Disord. 20(12):1419–1422, 2014.CrossRefPubMedGoogle Scholar
  56. 56.
    Yuan, Q., Zhou, W., Yuan, S., Li, X., Wang, J., and Jia, G., Epileptic EEG classification based on kernel sparse representation. Int. J. Neural Syst. 24(4):1450015, 2014 (13 pages).CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang, C., Wang, H., Wang, H., and Wu, M., EEG-based expert system using complexity measures and probability density function control in alpha sub-band. Integr. Comput. Aided Eng. 20(4):391–405, 2013.Google Scholar
  58. 58.
    Zhang, Y., and Zhou, W., Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial. Int. J. Neural Syst. 25(6):1550020, 2015 (14 pages).CrossRefPubMedGoogle Scholar
  59. 59.
    Zhou, L. R., Ou, J. P., and Yan, G. R., Response surface method based on radial basis functions for modeling large-scale structures in model updating. Comput. Aided Civ. Infrastruct. Eng. 28(3):210–226, 2013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Thomas J. Hirschauer
    • 1
  • Hojjat Adeli
    • 2
    Email author
  • John A. Buford
    • 3
  1. 1.Neuroscience Graduate Program and Medical Scientist Training ProgramThe Ohio State University College of MedicineColumbusUSA
  2. 2.Departments of Biomedical Engineering, Biomedical Informatics, Neurology, Neuroscience, Electrical and Computer Engineering, Civil, Environmental, and Geodetic Engineering, and Biophysics Graduate ProgramThe Ohio State UniversityColumbusUSA
  3. 3.Physical Therapy Division, School of Health and Rehabilitation SciencesThe Ohio State UniversityColumbusUSA

Personalised recommendations