Journal of Medical Systems

, 39:185 | Cite as

A Semantic Big Data Platform for Integrating Heterogeneous Wearable Data in Healthcare

  • Emna Mezghani
  • Ernesto Exposito
  • Khalil Drira
  • Marcos Da Silveira
  • Cédric Pruski
Mobile Systems
Part of the following topical collections:
  1. Mobile Systems

Abstract

Advances supported by emerging wearable technologies in healthcare promise patients a provision of high quality of care. Wearable computing systems represent one of the most thrust areas used to transform traditional healthcare systems into active systems able to continuously monitor and control the patients’ health in order to manage their care at an early stage. However, their proliferation creates challenges related to data management and integration. The diversity and variety of wearable data related to healthcare, their huge volume and their distribution make data processing and analytics more difficult. In this paper, we propose a generic semantic big data architecture based on the “Knowledge as a Service” approach to cope with heterogeneity and scalability challenges. Our main contribution focuses on enriching the NIST Big Data model with semantics in order to smartly understand the collected data, and generate more accurate and valuable information by correlating scattered medical data stemming from multiple wearable devices or/and from other distributed data sources. We have implemented and evaluated a Wearable KaaS platform to smartly manage heterogeneous data coming from wearable devices in order to assist the physicians in supervising the patient health evolution and keep the patient up-to-date about his/her status.

Keywords

Healthcare Wearable computing Heterogeneity Big data Data integration Scalability 

References

  1. 1.
    Milenković, A., Otto, C., and Jovanov, E., Wireless sensor networks for personal health monitoring: Issues and an implementation. Comput. Commun. 29(13):2521–2533, 2006. doi:10.1016/j.comcom.2006.02.011.CrossRefGoogle Scholar
  2. 2.
    Raskovic, D., Martin, T., and Jovanov, E., Medical monitoring applications for wearable computing. Comput. J. 47(4):495–504, 2004. doi:10.1093/comjnl/47.4.495.CrossRefGoogle Scholar
  3. 3.
    Research, A., Wearable Sports and Fitness Devices Will Hit 90 Million Shipments in 2017, 2012 https://www.abiresearch.com/press/wearable-sports-and-fitness-devices-will-hit-90-mi. Accessed 11 Nov 2014
  4. 4.
    Saponas TS, Lester J, Hartung C, Kohno T (2006) Devices that tell on you: The nike+ ipod sport kit. Dept of Computer Science and Engineering, University of Washington, Tech RepGoogle Scholar
  5. 5.
    Eisenman, S. B., Miluzzo, E., Lane, N. D., Peterson, R. A., Ahn, G.-S., and Campbell, A. T., BikeNet: A mobile sensing system for cyclist experience mapping. ACM Trans Sen Netw 6(1):1–39, 2010. doi:10.1145/1653760.1653766.CrossRefGoogle Scholar
  6. 6.
    Pentland, A., Healthwear: medical technology becomes wearable. Computer 37(5):42–49, 2004. doi:10.1109/MC.2004.1297238.CrossRefGoogle Scholar
  7. 7.
    Chan, M., Estève, D., Fourniols, J.-Y., Escriba, C., and Campo, E., Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 56(3):137–156, 2012. doi:10.1016/j.artmed.2012.09.003.CrossRefPubMedGoogle Scholar
  8. 8.
    Mena, L. J., Felix, V. G., Ostos, R., Gonzalez, J. A., Cervantes, A., Ochoa, A., Ruiz, C., Ramos, R., and Maestre, G. E., Mobile personal health system for ambulatory blood pressure monitoring. Comput Math Methods Med 2013:598196, 2013. doi:10.1155/2013/598196.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Georga, E. I., Protopappas, V. C., Bellos, C. V., and Fotiadis, D. I., Wearable systems and mobile applications for diabetes disease management. Heal. Technol. 4(2):101–112, 2014. doi:10.1007/s12553-014-0082-y.CrossRefGoogle Scholar
  10. 10.
    Chuo, Y., Tavakolian, K., and Kaminska, B., Evaluation of a novel integrated sensor system for synchronous measurement of cardiac vibrations and cardiac potentials. J. Med. Syst. 35(4):445–455, 2011. doi:10.1007/s10916-009-9380-8.CrossRefPubMedGoogle Scholar
  11. 11.
    Patel, S., Park, H., Bonato, P., Chan, L., and Rodgers, M., A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(1):21, 2012. doi:10.1186/1743-0003-9-21.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Acampora, G., Cook, D. J., Rashidi, P., and Vasilakos, A. V., A survey on ambient intelligence in healthcare. Proc. IEEE 101(12):2470–2494, 2013. doi:10.1109/JPROC.2013.2262913.CrossRefGoogle Scholar
  13. 13.
    International Data Corporation (IDC). http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm. Accessed 11 November 2014
  14. 14.
    Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., and Khan, S. U., The rise of “big data” on cloud computing: Review and open research issues. Inf. Syst. 47:98–115, 2015. doi:10.1016/j.is.2014.07.006.CrossRefGoogle Scholar
  15. 15.
    Banaee, H., Ahmed, M. U., and Loutfi, A., Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors 13(12):17472–17500, 2013. doi:10.3390/s131217472.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Almorsy M, Grundy J, Ibrahim AS Collaboration-based cloud computing security management framework. In: Cloud Computing (CLOUD), 2011 I.E. International Conference on, 2011. IEEE, pp 364-371. doi: 10.1109/CLOUD.2011.23
  17. 17.
    Kwon, O., Lee, N., and Shin, B., Data quality management, data usage experience and acquisition intention of big data analytics. Int. J. Inf. Manag. 34(3):387–394, 2014. doi:10.1016/j.ijinfomgt.2014.02.002.CrossRefGoogle Scholar
  18. 18.
    O’Driscoll, A., Daugelaite, J., and Sleator, R. D., ‘Big data’, Hadoop and cloud computing in genomics. J. Biomed. Inform. 46(5):774–781, 2013. doi:10.1016/j.jbi.2013.07.001.CrossRefPubMedGoogle Scholar
  19. 19.
    Chandrasekaran, B., Josephson, J. R., and Benjamins, V. R., What are ontologies, and why do we need them? IEEE Intell. Syst. 14(1):20–26, 1999. doi:10.1109/5254.747902.CrossRefGoogle Scholar
  20. 20.
    Grolinger, K., Mezghani, E., Capretz, M. A., and Exposito, E., Collaborative knowledge as a service applied to the disaster management domain. Int J Cloud Comput 4(1):5–27, 2015. doi:10.1504/IJCC.2015.067706.CrossRefGoogle Scholar
  21. 21.
    Liu F, Tong J, Mao J, Bohn R, Messina J, Badger L, Leaf D (2011) NIST cloud computing reference architecture. NIST special publication 500:292 http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505, Accessed 11 Nov 2014
  22. 22.
    Levin O, Ketner J, Krapohl D (2013) NIST Big Data Public Working Group: Reference Architecture Subgroup. http://jtc1bigdatasg.nist.gov/_workshop/06_NIST_BD_RefArch.pdf. Accessed 11 Nov 2014
  23. 23.
    Farran, B., Channanath, A. M., Behbehani, K., and Thanaraj, T. A., Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study. BMJ open 3(5), e002457, 2013. doi:10.1136/bmjopen-2012-002457.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Whiting, D. R., Guariguata, L., Weil, C., and Shaw, J., IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94(3):311–321, 2011. doi:10.1016/j.diabres.2011.10.029.CrossRefPubMedGoogle Scholar
  25. 25.
    Beaser, R. S., and Brown, J. A., Preventive Intervention in Diabetes: A New Model for Continuing Medical Education. Am. J. Prev. Med. 44(4):S394–S399, 2013. doi:10.1016/j.amepre.2013.01.003.CrossRefPubMedGoogle Scholar
  26. 26.
    Krötzsch M, Vrandečić D, Völkel M., Semantic mediawiki. In: Proceedings of the 5th International Semantic Web Conference (ISWC2006). 4273:935–942, 2006 doi: 10.1007/11926078_68
  27. 27.
    Kim, W., Lim, S., Ahn, J., Nah, J., and Kim, N., Integration of IEEE 1451 and HL7 exchanging information for patients’ sensor data. J. Med. Syst. 34(6):1033–1041, 2010. doi:10.1007/s10916-009-9322-5.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Ruiz-Zafra Á, Noguera M, Benghazi K, Towards a Model-Driven Approach for Sensor Management in Wireless Body Area Networks. In: Fortino G, Di Fatta G, Li W, Ochoa S, Cuzzocrea A, Pathan M (eds) Internet and Distributed Computing Systems, vol 8729. Lecture Notes in Computer Science. Springer International Publishing, pp 335-347, 2014 doi:10.1007/978-3-319-11692-1_29
  29. 29.
    Lasierra, N., Alesanco, A., Guillén, S., and Garcia, J., A three stage ontology-driven solution to provide personalized care to chronic patients at home. J. Biomed. Inform. 46(3):516–529, 2013. doi:10.1016/j.jbi.2013.03.006.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim, J., Kim, J., Lee, D., and Chung, K.-Y., Ontology driven interactive healthcare with wearable sensors. Multimed Tools Appli 71(2):827–841, 2014. doi:10.1007/s11042-012-1195-9.CrossRefGoogle Scholar
  31. 31.
    Forkan, A., Khalil, I., and Tari, Z., CoCaMAAL: A cloud-oriented context-aware middleware in ambient assisted living. Futur. Gener. Comput. Syst. 35:114–127, 2014. doi:10.1016/j.future.2013.07.009.CrossRefGoogle Scholar
  32. 32.
    Jiang, P., Winkley, J., Zhao, C., Munnoch, R., Min, G., and Yang, L. T., An intelligent information forwarder for healthcare big data systems with distributed wearable sensors. IEEE Syst. J. 99:9, 2014. doi:10.1109/JSYST.2014.2308324.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Emna Mezghani
    • 1
    • 2
    • 3
  • Ernesto Exposito
    • 1
    • 2
  • Khalil Drira
    • 1
    • 2
  • Marcos Da Silveira
    • 3
  • Cédric Pruski
    • 3
  1. 1.CNRS; LAASToulouseFrance
  2. 2.Univ de Toulouse; INSA; LAASToulouseFrance
  3. 3.Luxembourg Institute of Science and TechnologyEsch/AlzetteLuxembourg

Personalised recommendations