Advertisement

A Novel Authentication Scheme Using Self-certified Public Keys for Telecare Medical Information Systems

  • Dianli Guo
  • Qiaoyan Wen
  • Wenmin Li
  • Hua Zhang
  • Zhengping Jin
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement

Abstract

Telecare medical information systems (TMIS), with the explosive growth of communication technology and physiological monitoring devices, are applied increasingly to enable and support healthcare delivery services. In order to safeguard patients’ privacy and tackle the illegal access, authentication schemes for TMIS have been investigated and designed by many researchers. Many of them are promising for adoption in practice, nevertheless, they still have security flaws. In this paper, we propose a novel remote authentication scheme for TMIS using self-certified public keys, which is formally secure in the ID-mBJM model. Besides, the proposed scheme has better computational efficiency. Compared to the related schemes, our protocol is more practical for telemedicine system.

Keywords

Telecare medical information systems Authentication Anonymity Bilinear pairings Provable security 

Notes

Acknowledgments

The authors are grateful to the editor and anonymous reviewers for their valuable suggestions, which improved the paper. This work is supported by NSFC (Grant Nos. 61300181, 61202434), the Fundamental Research Funds for the Central Universities (Grant No. 2015RC23).

References

  1. 1.
    Das, M.L., Two-factor user authentication in wireless sensor networks. IEEE Trans. Wirel. Commun. 8(3): 1086–1090, 2009.CrossRefGoogle Scholar
  2. 2.
    Wen, F.T., Susilo, W., Yang, G.M., A robust smart card-based anonymous user authentication protocol for wireless communications. Security Comm. Networks 7(6):987C993, 2013.Google Scholar
  3. 3.
    Guo, D.L., and Wen, F.T., Analysis and improvement of a robust smart card based-authentication scheme for multi-server architecture. Wireless Pers. Commun. 78(1):475–490, 2014.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Wu, C., Lee, B., Tsaur, W., A secure authentication scheme with anonymity for wireless communications. IEEE Commun. Lett. 12(10):722–723, 2008.CrossRefGoogle Scholar
  5. 5.
    Li, X., Wen, Q., Zhang, H., Jin, Z., An improved authentication with key agreement scheme on elliptic curve cryptosystem for global mobility networks. Int. J. Netw. Manag. 23(5):311–324, 2013.CrossRefGoogle Scholar
  6. 6.
    Wu, Z.Y., Lee, Y.C., Lai, F., Lee, H.C., Chung, Y., A secure authentication scheme for telecare medicine information systems. J. Med. Syst. 36(3):1529–1535, 2012.CrossRefGoogle Scholar
  7. 7.
    He, D.B., Chen, J.H., Zhang, R., A more secure authentication scheme for telecare medicine information systems. J. Med. Syst. 36(3):1989–1995, 2012.CrossRefGoogle Scholar
  8. 8.
    Wei, J., Hu, X., Liu, W., An improved authentication scheme for telecare medicine information systems. J. Med. Syst. 36 (6):3597–3604, 2012.CrossRefGoogle Scholar
  9. 9.
    Zhu, Z., An efficient authentication scheme for telecare medicine information systems. J. Med. Syst. 36(6): 3833–3838, 2012.CrossRefGoogle Scholar
  10. 10.
    Pu, Q., Wang, J., Zhao, R.Y., Strong authentication scheme for telecare medicine information systems. J. Med. Syst. 36 (4):2609–2619, 2012.CrossRefGoogle Scholar
  11. 11.
    Chen, H.M., Lo, J.W., Yeh, C.K., An efficient and secure dynamic id-based authentication scheme for telecare medical information systems. J. Med. Syst. 36(6):3907–3915, 2012.CrossRefGoogle Scholar
  12. 12.
    Cao, T.J., and Zhai, J.X., Improved dynamic ID-based authentication scheme for telecare medical information systems. J. Med. Syst., 2013. doi: 10.1007/s10916-012-9912-5.Google Scholar
  13. 13.
    Xie, Q., Zhang, J., Dong, N., Robust anonymous authentication scheme for telecare medical information systems. J. Med. Syst., 2013. doi: 10.1007/s10916-012-9911-6.Google Scholar
  14. 14.
    Lin, H.Y., On the security of a dynamic ID-based authentication scheme for telecare medical information systems. J. Med. Syst., 2013. doi: 10.1007/s10916-013-9929-4.Google Scholar
  15. 15.
    Jiang, Q., Ma, J.F., Ma, Z., Li, G.S., A privacy enhanced authentication scheme for telecare medical information systems. J. Med. Syst., 2013. doi: 10.1007/s10916-012-9897-0.Google Scholar
  16. 16.
    Wu, F., and Xu, L., Security analysis and improvement of a privacy authentication scheme for telecare medical information systems. J. Med. Syst., 2014. doi: 10.1007/s10916-013-9958-z.Google Scholar
  17. 17.
    Wen, F., and Guo, D., An improved anonymous authentication scheme for telecare medical information systems. J. Med. Syst., 2014. doi: 10.1007/s10916-014-0026-0.Google Scholar
  18. 18.
    Li, T., Lee, C., Weng, C., A secure chaotic maps and smart cards based password authentication and key agreement scheme with user anonymity for telecare medicine information systems. J. Med. Syst., 2014. doi: 10.1007/s10916-014-0077-2.Google Scholar
  19. 19.
    Das, A.K., and Goswami, A., An enhanced biometric authentication scheme for telecare medicine information systems with nonce using chaotic hash function. J. Med. Syst., 2014. doi: 10.1007/s10916-014-0027-z.Google Scholar
  20. 20.
    Islam, S.K., and Biswas, G.P., A more efficient and secure ID-based remote mutual authentication with key agreement scheme for mobile devices on elliptic curve cryptosystem. J. Syst. Softw. 84(11):1892C 1898, 2011.CrossRefGoogle Scholar
  21. 21.
    Li, C.T., A new password authentication and user anonymity scheme based on elliptic curve cryptography and smart card. IET Inforamtion. Security 7(1):3–10, 2013.CrossRefGoogle Scholar
  22. 22.
    Liu, J., Zhang, Z., Chen, X., Kwak, K., Certificateless remote anonymous authentication schemes for wireless body sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(2):332–342, 2014.CrossRefGoogle Scholar
  23. 23.
    Zhao, Z., An efficient anonymous authentication scheme for wireless body area networks using elliptic curve cryptosystem. J. Med. Syst., 2014. doi: 10.1007/s10916-014-0013-5.Google Scholar
  24. 24.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. Proceedings of Advances in Cryptology, Santa Barbara, CA, U.S.A., pp. 388–397 (1999)Google Scholar
  25. 25.
    Messerges, T.S., Dabbish, E.A., Sloan, E.A., Examining smart-card security under the threat of power analysis attacks. IEEE Trans. Comput. 51(5):541–552, 2002.CrossRefMathSciNetGoogle Scholar
  26. 26.
    Chang, Y.F., Yu, S.H., Shiao, D.R., An uniqueness-andanonymity-preserving remote user authentication scheme for connected health care. J. Med. Syst. 37:9902, 2013.CrossRefGoogle Scholar
  27. 27.
    Joux, A., A one round protocol for tripartite Diffie? CHellman 4th International Symposium on Algorithmic Number Theory, Lecture Notes in Comput. Sci. Vol. 1838, p. 385C394. New York: Springer, 2000.Google Scholar
  28. 28.
    Boneh, D., and Franklin, M., Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3): 586C615, 2003.CrossRefMathSciNetGoogle Scholar
  29. 29.
    Wang, S., Cao, Z., Choo, K., Wang, L., An improved identity-based key agreement protocol and its security proof. Info. Sci. 179:307–318, 2009.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Kudla, C., Special signature schemes and key agreement protocols, PH.D. Thesis: Royal Holloway University of London , 2006.Google Scholar
  31. 31.
    Kudla, C., and Paterson, K.: Modular security proofs for key agreement protocols. In: Proceedings ASIACRYPT’05, LNCS, Vol. 3788, pp. 549–565 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dianli Guo
    • 1
  • Qiaoyan Wen
    • 1
  • Wenmin Li
    • 1
  • Hua Zhang
    • 1
  • Zhengping Jin
    • 1
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations