A Meta-Synthesis of Behavioral Outcomes from Telemedicine Clinical Trials for Type 2 Diabetes and the Clinical User-Experience Evaluation (CUE)

Education & Training
Part of the following topical collections:
  1. Education & Training


A worldwide demographic shift is in progress and the aged population proportion is projected to more than double across the next four decades. Our current healthcare models may not be adequate to handle this shift in demography, which may have serious consequences for the ageing population who are more prone to chronic diseases. One proposed remediation is to provide in-home assisted healthcare with technology-intervened approaches. Telemedicine, telehealth, e-health are paradigms found in scientific literature that provide clinical treatment through a technology intervention. In evidence-based medical science, these technology interventions are evaluated through clinical trials, which are targeted to measure improvements in medical conditions and the treatment’s cost effectiveness. However, effectiveness of a technology also depends on the interaction pattern between the technology and its’ users, especially the patients. This paper presents (1) a meta-synthesis of clinical trials for technology-intervened treatments of type 2 diabetes and (2) the Clinical User-Experience Evaluation (CUE). CUE is a recommendation for future telemedicine clinical trials that focuses on the patient as the user from Human-Computer Interaction (HCI) perspective and was developed as part of this research. The clinical trials reviewed were interpreted from a technology perspective and the non-medical or non-biological improvements of the users (patients) rather than the medical outcome. Results show that technology-intervened treatments provide positive behavior changes among patients and are potentially highly beneficial for chronic illness management such as type 2 diabetes. The results from the CUE method show how it complements clinical trials to capture patients’ interaction with a technology.


Human computer interaction Telemedicine Technology-intervened treatment Clinical trial Clinical user-experience evaluation 



The authors would like to thank the participants who volunteered in the CUE and the Townsville-Mackay Medicare Locals (TMML) who conduct the clinical trials and Dianna Hardy from James Cook University, Australia and Professor Alison Bowes from the University of Stirling, Scotland, for their expertise, interest, helpful discussions and feedback.


  1. 1.
    Bloom, D. E., Canning, D., and Fink, G., The economics of ageing: an editorial introduction - Implications of population ageing for economic growth. Oxford Review of Economic Policy 26(4):581–582, 2010. doi: 10.1093/oxrep/grq038.CrossRefGoogle Scholar
  2. 2.
    Lunenfeld, B., and Stratton, P., The clinical consequences of an ageing world and preventive strategies. Best Practice & Research Clinical Obstetrics & Gynaecology 27(5):643–659, 2013. doi: 10.1016/j.bpobgyn.2013.02.005.CrossRefGoogle Scholar
  3. 3.
    Jaana, M., and Paré, G., Home telemonitoring of patients with diabetes: a systematic assessment of observed effects. Journal of Evaluation in Clinical Practice 13(2):242–253, 2007.CrossRefGoogle Scholar
  4. 4.
    Wai AAP, Foo SF, Jayachandran M, Biswas J, Nugent C, Mulvenna M, Zhang D, Craig D, Passmore P, Lee JE (2010) Towards developing effective Continence Management through wetness alert diaper: Experiences, lessons learned, challenges and future directions. Paper presented at the 4th International Conference on-NO PERMISSIONS, Munich, Germany, 22–25 MarchGoogle Scholar
  5. 5.
    Meystre, S., The current state of telemonitoring: a comment on the literature. Telemedicine Journal & e-Health 11(1):63–69, 2005.CrossRefGoogle Scholar
  6. 6.
    Finfgeld, D. L., Metasynthesis: The state of the art—so far. Qualitative Health Research 13(7):893–904, 2003.CrossRefGoogle Scholar
  7. 7.
    United States Sensus Bureau (2013) United States Census Bureau. http://www.census.gov/ipc/www/idbpyr.html. Accessed August 16 2013
  8. 8.
    Australian Bureau of Statistics (2013) Australian Bureau of Statistics. http://www.abs.gov.au. Accessed October 16, 2012
  9. 9.
    International Diabetes Federation (2013) Diabetes Atlas. http://www.idf.org/diabetesatlas/. Accessed October 29 2013
  10. 10.
    Buttler D, Liu L, Pu C (2001) A fully automated object extraction system for the World Wide Web. Paper presented at the 21st International Conference on Distributed Computing Systems, Mesa, AZ, USA, April 16–19Google Scholar
  11. 11.
    Harjumaa M, Isomursu M, Muuraiskangas S, Konttila A (2011) HearMe: A touch-to-speech UI for medicine identification. Paper presented at the 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Dublin, UK, May 23–26Google Scholar
  12. 12.
    Diabetes Australia Limited (2013) Diabetes Australia. http://www.diabetesaustralia.com.au/. Accessed 20 July 2013
  13. 13.
    Benocci M, Bächlin M, Farella E, Roggen D, Benini L, Tröster G (2010) Wearable assistant for load monitoring: recognition of on—body load placement from gait alterations. Paper presented at the 4th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Munich, Germany, 22–25 MarchGoogle Scholar
  14. 14.
    Matic A, Mehta P, Rehg JM, Osmani V, Mayora O AID-ME: Automatic Identification of Dressing failures through Monitoring of patients and activity Evaluation. In, 2010. IEEE, pp 1–8Google Scholar
  15. 15.
    Kanstrup AM, Bertelsen P, Glasemann M, Boye N Design for more: an ambient perspective on diabetes. In: Proceedings of the 10th Anniversary Conference on Participatory Design (PDC08), Indiana, USA, 30 September – 4 October 2008. Indiana University, pp 118–127Google Scholar
  16. 16.
    Markow T, Ramakrishnan N, Huang K, Starner T, Eicholtz M, Garrett S, Profita H, Scarlata A, Schooler C, Tarun A (2010) Mobile music touch: Vibration stimulus in hand rehabilitation. Paper presented at the 4th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Munich, Germany, 22–25 MarchGoogle Scholar
  17. 17.
    Zhang, P., Zhang, X., Brown, J., Vistisen, D., Sicree, R., Shaw, J., and Nichols, G., Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Research and Clinical Practice 87(3):293–301, 2010. doi: 10.1016/j.diabres.2010.01.026.CrossRefGoogle Scholar
  18. 18.
    Guyatt, G., Cairns, J., Churchill, D., Cook, D., Haynes, B., Hirsh, J., Irvine, J., Levine, M., and Nishikawa, J., Evidence-based medicine. JAMA: The Journal of the American Medical Association 268(17):2420–2425, 1992.CrossRefGoogle Scholar
  19. 19.
    Sackett, D. L., Rosenberg, W., Gray, J., Haynes, R. B., and Richardson, W. S., Evidence based medicine: what it is and what it isn’t. BMJ 312(7023):71–72, 1996.CrossRefGoogle Scholar
  20. 20.
    Sackett, D. L., Evidence-based medicine. Seminars in perinatology 21(1):3–5, 1997.CrossRefGoogle Scholar
  21. 21.
    Winters, S., Diagnosis by wireless. Scientific American 124:465–465, 1921.CrossRefGoogle Scholar
  22. 22.
    Moore, M., The evolution of telemedicine. Future Generation Computer Systems 15(2):245–254, 1999.CrossRefGoogle Scholar
  23. 23.
    Sood, S., Mbarika, V., Jugoo, S., Dookhy, R., Doarn, C. R., Prakash, N., and Merrell, R. C., What is telemedicine? A collection of 104 peer-reviewed perspectives and theoretical underpinnings. Telemedicine and e-Health 13(5):573–590, 2007.CrossRefGoogle Scholar
  24. 24.
    Tachakra, S., Wang, X., Istepanian, R. S. H., and Song, Y., Mobile e-health: the unwired evolution of telemedicine. Telemedicine Journal and E-health 9(3):247–257, 2003.CrossRefGoogle Scholar
  25. 25.
    Orlov, O. I., Drozdov, D. V., Doarn, C. R., and Merrell, R. C., Wireless ECG monitoring by telephone. Telemedicine Journal and E-health 7(1):33–38, 2001.CrossRefGoogle Scholar
  26. 26.
    Anvari, M., Telesurgery: remote knowledge translation in clinical surgery. World journal of surgery 31(8):1545–1550, 2007.CrossRefGoogle Scholar
  27. 27.
    American Telemedicine Association (2013) American Telemedicine Association. www.americantelemed.org. Accessed August 11 2013
  28. 28.
    Eysenbach G (2001) What is e-health? Journal of medical internet research 3 (2)Google Scholar
  29. 29.
    Braiterman, J., Verhage, S., and Choo, R., Business: designing with users in Internet time. Interactions 7(5):23–27, 2000.CrossRefGoogle Scholar
  30. 30.
    Lissack, M., and Roos, J., The next common sense: Mastering corporate complexity through coherence. Nicholas Brealey Publishing, London, 1999.Google Scholar
  31. 31.
    Dalcher D, Drevin L Learning from information systems failures by using narrative and ante-narrative methods. In: Proceedings of the annual research conference of the South African institute of computer scientists and information technologists on: Enablement through technology (SAICSIT ’03), 2003. South African Institute for Computer Scientists and Information Technologists, Republic of South Africa, pp 137–142Google Scholar
  32. 32.
    Dalcher, D., Software project success: moving beyond failure. The European Journal for the Informatics Professional 10(1):42–50, 2009.Google Scholar
  33. 33.
    Ekeland, A. G., Bowes, A., and Flottorp, S., Effectiveness of telemedicine: a systematic review of reviews. International journal of medical informatics 79(11):736–771, 2010.CrossRefGoogle Scholar
  34. 34.
    Verhoeven, F., van Gemert-Pijnen, L., Dijkstra, K., Nijland, N., Seydel, E., and Steehouder, M., The contribution of teleconsultation and videoconferencing to diabetes care: a systematic literature review. Journal of Medical Internet Research 9(5), e37, 2007. doi: 10.2196/jmir.9.5.e37.CrossRefGoogle Scholar
  35. 35.
    Verhoeven, F., Tanja-Dijkstra, K., Nijland, N., Eysenbach, G., and van Gemert-Pijnen, L., Asynchronous and synchronous teleconsultation for diabetes care: a systematic literature review. Journal of diabetes science and technology 4(3):666–684, 2010.CrossRefGoogle Scholar
  36. 36.
    Orji R, Mandryk RL, Vassileva J, Gerling KM Tailoring persuasive health games to gamer type. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2013. ACM, pp 2467–2476Google Scholar
  37. 37.
    Orji R, Vassileva J, Mandryk RL (2014) Modeling the efficacy of persuasive strategies for different gamer types in serious games for health. User Modeling and User-Adapted Interaction:1–46Google Scholar
  38. 38.
    Fogg B, Nass C How users reciprocate to computers: an experiment that demonstrates behavior change. In: Proceeding of CHI EA ’97 - CHI ’97 extended abstracts on human factors in computing systems: looking to the future, 1997. ACM, pp 331–332. doi: 10.1145/1120212.1120419
  39. 39.
    Oinas-Kukkonen H (2010) Behavior change support systems: A research model and agenda. In: Persuasive Technology. Springer, pp 4–14Google Scholar
  40. 40.
    Fogg B, Nass C How users reciprocate to computers: an experiment that demonstrates behavior change. In: CHI’97 extended abstracts on Human factors in computing systems: looking to the future, 1997. ACM, pp 331–332Google Scholar
  41. 41.
    Oinas-Kukkonen, H., A foundation for the study of behavior change support systems. Personal and ubiquitous computing 17(6):1223–1235, 2013.CrossRefGoogle Scholar
  42. 42.
    Orji R, Vassileva J, Mandryk R (2012) Towards an effective health interventions design: an extension of the health belief model. Online journal of public health informatics 4 (3)Google Scholar
  43. 43.
    Intille, S. S., A new research challenge: persuasive technology to motivate healthy aging. Information Technology in Biomedicine, IEEE Transactions on 8(3):235–237, 2004.CrossRefGoogle Scholar
  44. 44.
    Fogg, B. J., and Nass, C., Silicon sycophants: the effects of computers that flatter. International Journal of Human-Computer Studies 46(5):551–561, 1997. doi: 10.1006/ijhc.1996.0104.CrossRefGoogle Scholar
  45. 45.
    Fogg, B. J., Persuasive technologie301398. Communications of the ACM 42(5):26–29, 1999.CrossRefGoogle Scholar
  46. 46.
    Grimes A, Grinter RE (2007) Designing persuasion: Health technology for low-income African American communities. In: Persuasive Technology. Springer, pp 24–35Google Scholar
  47. 47.
    Hilliman, C. A., Cimino, J. J., Lai, A. M., Kaufman, D. R., Starren, J. B., and Shea, S., The effects of redesigning the IDEATel architecture on glucose uploads. Telemedicine journal and e-health : the official journal of the American Telemedicine Association 15(3):248–254, 2009. doi: 10.1089/tmj.2008.0101.CrossRefGoogle Scholar
  48. 48.
    Shea, S., The Informatics for Diabetes and Education Telemedicine (IDEATel) project. Transactions of the American Clinical and Climatological Association 118:289–304, 2007.Google Scholar
  49. 49.
    Weinstock, R. S., Teresi, J. A., Goland, R., Izquierdo, R., Palmas, W., Eimicke, J. P., Ebner, S., and Shea, S., Glycemic control and health disparities in older ethnically diverse underserved adults with diabetes: five-year results from the Informatics for Diabetes Education and Telemedicine (IDEATel) study. Diabetes Care 34(2):274–279, 2011. doi: 10.2337/dc10-1346.CrossRefGoogle Scholar
  50. 50.
    Leichter, S. B., Bowman, K., Adkins, R. A., and Jelsovsky, Z., Impact of remote management of diabetes via computer: the 360 study–a proof-of-concept randomized trial. Diabetes Technol Ther 15(5):434–438, 2013. doi: 10.1089/dia.2012.0323.CrossRefGoogle Scholar
  51. 51.
    Biermann, E., Dietrich, W., and Standl, E., Telecare of diabetic patients with intensified insulin therapy. A randomized clinical trial. Studies in health technology and informatics 77(1):327–332, 1999.Google Scholar
  52. 52.
    Shultz EK, Bauman A, Hayward M, Rodbard D, Holzman R Improved diabetic prognosis following telecommunication and graphical processing of diabetic data. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, 1991. American Medical Informatics Association, p 53Google Scholar
  53. 53.
    McFarland, M., Davis, K., Wallace, J., Wan, J., Cassidy, R., Morgan, T., and Venugopal, D., Use of home telehealth monitoring with active medication therapy management by clinical pharmacists in veterans with poorly controlled type 2 diabetes mellitus. Pharmacotherapy 32(5):420–426, 2012. doi: 10.1002/j.1875-9114.2011.01038.x.CrossRefGoogle Scholar
  54. 54.
    Stone, R. A., Rao, R. H., Sevick, M. A., Cheng, C., Hough, L. J., Macpherson, D. S., Franko, C. M., Anglin, R. A., Obrosky, D. S., and Derubertis, F. R., Active care management supported by home telemonitoring in veterans with type 2 diabetes: the DiaTel randomized controlled trial. Diabetes Care 33(3):478–484, 2010. doi: 10.2337/dc09-1012.CrossRefGoogle Scholar
  55. 55.
    Estrada, C. A., Safford, M. M., Salanitro, A. H., Houston, T. K., Curry, W., Williams, J. H., Ovalle, F., Kim, Y., Foster, P., and Allison, J. J., A web-based diabetes intervention for physician: a cluster-randomized effectiveness trial. International journal for quality in health care : journal of the International Society for Quality in Health Care / ISQua 23(6):682–689, 2011. doi: 10.1093/intqhc/mzr053.CrossRefGoogle Scholar
  56. 56.
    Rodriguez-Idigoras, M. I., Sepulveda-Munoz, J., Sanchez-Garrido-Escudero, R., Martinez-Gonzalez, J. L., Escolar-Castello, J. L., Paniagua-Gomez, I. M., Bernal-Lopez, R., Fuentes-Simon, M. V., and Garofano-Serrano, D., Telemedicine influence on the follow-up of type 2 diabetes patients. Diabetes Technol Ther 11(7):431–437, 2009. doi: 10.1089/dia.2008.0114.CrossRefGoogle Scholar
  57. 57.
    Watson, A. J., Kvedar, J. C., Rahman, B., Pelletier, A. C., Salber, G., and Grant, R. W., Diabetes connected health: a pilot study of a patient- and provider-shared glucose monitoring web application. J Diabetes Sci Technol 3(2):345–352, 2009.CrossRefGoogle Scholar
  58. 58.
    Eakin, E. G., Reeves, M. M., Marshall, A. L., Dunstan, D. W., Graves, N., Healy, G. N., Bleier, J., Barnett, A. G., O’Moore-Sullivan, T., Russell, A., and Wilkie, K., Living Well with Diabetes: a randomized controlled trial of a telephone-delivered intervention for maintenance of weight loss, physical activity and glycaemic control in adults with type 2 diabetes. BMC public health 10:452, 2010. doi: 10.1186/1471-2458-10-452.CrossRefGoogle Scholar
  59. 59.
    Davis, R. M., Hitch, A. D., Salaam, M. M., Herman, W. H., Zimmer-Galler, I. E., and Mayer-Davis, E. J., TeleHealth improves diabetes self-management in an underserved community: diabetes TeleCare. Diabetes Care 33(8):1712–1717, 2010. doi: 10.2337/dc09-1919.CrossRefGoogle Scholar
  60. 60.
    Rutten, G., Van Eijk, J., de Nobel, E., Beek, M., and Van der Velden, H., Feasibility and effects of a diabetes type II protocol with blood glucose self-monitoring in general practice. Family practice 7(4):273–278, 1990.CrossRefGoogle Scholar
  61. 61.
    Tsang, M., Mok, M., Kam, G., Jung, M., Tang, A., and Chan, U., Improvement in diabetes control with a monitoring system based on a hand-held, touch-screen electronic diary. Journal of Telemedicine and Telecare 7(1):47–50, 2001.CrossRefGoogle Scholar
  62. 62.
    Kim, S. I., and Kim, H. S., Effectiveness of mobile and internet intervention in patients with obese type 2 diabetes. Int J Med Inform 77(6):399–404, 2008. doi: 10.1016/j.ijmedinf.2007.07.006.CrossRefGoogle Scholar
  63. 63.
    Biermann, E., Dietrich, W., and Standl, E., Telecare of diabetic patients with intensified insulin therapy. Stud Health Technol Inform 77:327–332, 2000.Google Scholar
  64. 64.
    Piette, J. D., Weinberger, M., McPhee, S. J., Mah, C. A., Kraemer, F. B., and Crapo, L. M., Do automated calls with nurse follow-up improve self-care and glycemic control among vulnerable patients with diabetes? American Journal of Medicine 108(1):20–27, 2000.CrossRefGoogle Scholar
  65. 65.
    Williams, E. D., Bird, D., Forbes, A. W., Russell, A., Ash, S., Friedman, R., Scuffham, P. A., and Oldenburg, B., Randomised controlled trial of an automated, interactive telephone intervention (TLC Diabetes) to improve type 2 diabetes management: baseline findings and six-month outcomes. BMC public health 12:602, 2012. doi: 10.1186/1471-2458-12-602.CrossRefGoogle Scholar
  66. 66.
    Meneghini, L. F., Albisser, A. M., Goldberg, R. B., and Mintz, D. H., An electronic case manager for diabetes control. Diabetes care 21(4):591–596, 1998.CrossRefGoogle Scholar
  67. 67.
    Glasgow, R. E., and Toobert, D. J., Brief, computer-assisted diabetes dietary self-management counseling: effects on behavior, physiologic outcomes, and quality of life. Medical care 38(11):1062–1073, 2000.CrossRefGoogle Scholar
  68. 68.
    McKay, H. G., Glasgow, R. E., Feil, E. G., Boles, S. M., and Barrera, M., Jr., Internet-based diabetes self-management and support: Initial outcomes from the Diabetes Network project. Rehabilitation Psychology 47(1):31, 2002.CrossRefGoogle Scholar
  69. 69.
    Cherry, J. C., Moffatt, T. P., Rodriguez, C., and Dryden, K., Diabetes disease management program for an indigent population empowered by telemedicine technology. Diabetes technology & therapeutics 4(6):783–791, 2002.CrossRefGoogle Scholar
  70. 70.
    Montori, V. M., Dinneen, S. F., Gorman, C. A., Zimmerman, B. R., Rizza, R. A., Bjornsen, S. S., Green, E. M., Bryant, S. C., and Smith, S. A., The Impact of Planned Care and a Diabetes Electronic Management System on Community-Based Diabetes Care The Mayo Health System Diabetes Translation Project†. Diabetes care 25(11):1952–1957, 2002.CrossRefGoogle Scholar
  71. 71.
    Cho, J. H., Chang, S. A., Kwon, H. S., Choi, Y. H., Ko, S. H., Moon, S. D., Yoo, S. J., Song, K. H., Son, H. S., Kim, H. S., Lee, W. C., Cha, B. Y., Son, H. Y., and Yoon, K. H., Long-term effect of the Internet-based glucose monitoring system on HbA1c reduction and glucose stability: a 30-month follow-up study for diabetes management with a ubiquitous medical care system. Diabetes Care 29(12):2625–2631, 2006. doi: 10.2337/dc05-2371.CrossRefGoogle Scholar
  72. 72.
    Izquierdo, R. E., Knudson, P. E., Meyer, S., Kearns, J., Ploutz-Snyder, R., and Weinstock, R. S., A comparison of diabetes education administered through telemedicine versus in person. Diabetes care 26(4):1002–1007, 2003.CrossRefGoogle Scholar
  73. 73.
    Young, R. J., Taylor, J., Friede, T., Hollis, S., Mason, J. M., Lee, P., Burns, E., Long, A. F., Gambling, T., and New, J. P., Pro-active call center treatment support (PACCTS) to improve glucose control in type 2 diabetes a randomized controlled trial. Diabetes care 28(2):278–282, 2005.CrossRefGoogle Scholar
  74. 74.
    Cahill, D. J., Thach, S. V., and Warshawsky, R. M., The marketing concept and new high-tech products: is there a fit? Journal of Product Innovation Management 11(4):336–343, 1994.CrossRefGoogle Scholar
  75. 75.
    Bardram JE (2008) Clinical proof-of-concept–A evaluation method for pervasive healthcare systems. Paper presented at the Ubiquitous Systems Evaluation (USE ’08), Seoul, Korea, 21–24 SeptemberGoogle Scholar
  76. 76.
    Baecker R, Booth K, Jovicic S, McGrenere J, Moore G Reducing the gap between what users know and what they need to know. In: Proceedings on the 2000 conference on Universal Usability, 2000. ACM, pp 17–23Google Scholar
  77. 77.
    Carroll, J. M., and Carrithers, C., Training wheels in a user interface. Communications of the ACM 27(8):800–806, 1984.CrossRefGoogle Scholar
  78. 78.
    Lazar, J., User-centered Web development. Jones & Bartlett Learning, Sudbury, MA, USA, 2001.Google Scholar
  79. 79.
    Bujnowska-Fedak, M. M., Puchala, E., and Steciwko, A., The impact of telehome care on health status and quality of life among patients with diabetes in a primary care setting in Poland. Telemedicine journal and e-health : the official journal of the American Telemedicine Association 17(3):153–163, 2011. doi: 10.1089/tmj.2010.0113.CrossRefGoogle Scholar
  80. 80.
    Reeves, B., and Nass, C., The media equation: how people treat computers, television, and new media like real people and places. Cambridge University Press, United Kingdom, 1996.Google Scholar
  81. 81.
    Faridi, Z., Liberti, L., Shuval, K., Northrup, V., Ali, A., and Katz, D. L., Evaluating the impact of mobile telephone technology on type 2 diabetic patients’ self-management: the NICHE pilot study. J Eval Clin Pract 14(3):465–469, 2008. doi: 10.1111/j.1365-2753.2007.00881.x.CrossRefGoogle Scholar
  82. 82.
    Lavery, L. A., Higgins, K. R., Lanctot, D. R., Constantinides, G. P., Zamorano, R. G., Armstrong, D. G., Athanasiou, K. A., and Agrawal, C., Home monitoring of foot skin temperatures to prevent ulceration. Diabetes care 27(11):2642–2647, 2004.CrossRefGoogle Scholar
  83. 83.
    Steele, R., Lo, A., Secombe, C., and Wong, Y. K., Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare. International journal of medical informatics 78(12):788–801, 2009. doi: 10.1016/j.ijmedinf.2009.08.001.CrossRefGoogle Scholar
  84. 84.
    Jadad, A. R., Moore, R. A., Carroll, D., Jenkinson, C., Reynolds, D. J. M., Gavaghan, D. J., and McQuay, H. J., Assessing the quality of reports of randomized clinical trials: is blinding necessary? Controlled clinical trials 17(1):1–12, 1996.CrossRefGoogle Scholar
  85. 85.
    Olivo, S. A., Macedo, L. G., Gadotti, I. C., Fuentes, J., Stanton, T., and Magee, D. J., Scales to assess the quality of randomized controlled trials: a systematic review. Physical therapy 88(2):156–175, 2008.CrossRefGoogle Scholar
  86. 86.
    Long, A. F., Gambling, T., Young, R. J., Taylor, J., and Mason, J. M., Acceptability and satisfaction with a telecarer approach to the management of type 2 diabetes. Diabetes care 28(2):283–289, 2005.CrossRefGoogle Scholar
  87. 87.
    Zolfaghari, M., Mousavifar, S. A., Pedram, S., and Haghani, H., The impact of nurse short message services and telephone follow-ups on diabetic adherence: which one is more effective? Journal of clinical nursing 21(13–14):1922–1931, 2012. doi: 10.1111/j.1365-2702.2011.03951.x.CrossRefGoogle Scholar
  88. 88.
    Tang, P. C., Overhage, J. M., Chan, A. S., Brown, N. L., Aghighi, B., Entwistle, M. P., Hui, S. L., Hyde, S. M., Klieman, L. H., Mitchell, C. J., Perkins, A. J., Qureshi, L. S., Waltimyer, T. A., Winters, L. J., and Young, C. Y., Online disease management of diabetes: engaging and motivating patients online with enhanced resources-diabetes (EMPOWER-D), a randomized controlled trial. Journal of the American Medical Informatics Association : JAMIA 20(3):526–534, 2013. doi: 10.1136/amiajnl-2012-001263.CrossRefGoogle Scholar
  89. 89.
    Carlisle, K., Warren, R., Scuffham, P., and Cheffins, T., Randomised Controlled Trial of an In-Home Monitoring Intervention to Improve Health Outcomes for Type 2 Diabetes: Study Protocol. Studies in Health Technology and Informatics 182(1):43, 2012. doi: 10.3233/978-1-61499-152-6-43.Google Scholar
  90. 90.
    Wells, J. D., Campbell, D. E., Valacich, J. S., and Featherman, M., The effect of perceived novelty on the adoption of information technology innovations: a risk/reward perspective. Decision Sciences 41(4):813–843, 2010.CrossRefGoogle Scholar
  91. 91.
    Clark RE, Craig TG (1992) Research and theory on multi-media learning effects. In: Interactive multimedia learning environments. Springer, pp 19–30Google Scholar
  92. 92.
    Beyer, H., and Holtzblatt, K., Contextual design: defining customer-centered systems. Morgan Kaufmann, Burlington, MA, USA, 1997.Google Scholar
  93. 93.
    Jalil S, Myers T, Atkinson A Design Implications from the Preliminary Results of a Telemedicine Patient-Technology Interaction Study. In: The 7th International Symposium on Visual Information Communication and Interaction (VINCI’ 2014), Sydney, Australia, 6–8 August 2014 2014. ACM,Google Scholar
  94. 94.
    TechCast Global (2013) TechCast a virtual think tank tracking the technology revolution. http://www.techcast.org/BreakthroughAnalysis.aspx?ID=52. Accessed 17 June 2013
  95. 95.
    Bardram, J. E., Pervasive healthcare as a scientific discipline. Methods of Information in Medicine 47(3):178–185, 2008.Google Scholar
  96. 96.
    Jalil S (2013) Persuasion for in-home technology intervened healthcare of chronic disease: Case of diabetes type 2. Paper presented at the Adjunct Proceedings of 8th International Conference on Persuasive Technology (Persuasive-2013), Sydney, Australia, April 3–5Google Scholar
  97. 97.
    Trossen, D., and Pavel, D., Sensor networks, wearable computing, and healthcare Applications. Pervasive Computing, IEEE 6(2):58–61, 2007.CrossRefGoogle Scholar
  98. 98.
    Lau, D. C., Douketis, J. D., Morrison, K. M., Hramiak, I. M., Sharma, A. M., and Ur, E., 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children [summary]. Canadian Medical Association Journal 176(8):S1–S13, 2007.CrossRefGoogle Scholar
  99. 99.
    Darkins, A., Ryan, P., Kobb, R., Foster, L., Edmonson, E., Wakefield, B., and Lancaster, A. E., Care coordination/home telehealth: the systematic implementation of health informatics, home telehealth, and disease management to support the care of veteran patients with chronic conditions. Telemedicine and e-Health 14(10):1118–1126, 2008.CrossRefGoogle Scholar
  100. 100.
    Bardram JE, Mihailidis A (2006) Pervasive computing in healthcare. CRCGoogle Scholar
  101. 101.
    Hassenzahl, M., Diefenbach, S., and Göritz, A., Needs, affect, and interactive products-Facets of user experience. Interacting with computers 22(5):353–362, 2010.CrossRefGoogle Scholar
  102. 102.
    Pressman, A. R., Kinoshita, L., Kirk, S., Barbosa, G. M., Chou, C., and Minkoff, J., A novel telemonitoring device for improving diabetes control: protocol and results from a randomized clinical trial. Telemedicine journal and e-health : the official journal of the American Telemedicine Association 20(2):109–114, 2014. doi: 10.1089/tmj.2013.0157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Discipline of Information TechnologyJames Cook UniversityTownsvilleAustralia
  2. 2.E-Research CentreJames Cook UniversityTownsvilleAustralia

Personalised recommendations