Cryptographically Supported NFC Tags in Medication for Better Inpatient Safety

  • Mehmet Hilal Özcanhan
  • Gökhan Dalkılıç
  • Semih Utku
Patient Facing Systems
Part of the following topical collections:
  1. Patient Facing Systems

Abstract

Reliable sources report that errors in drug administration are increasing the number of harmed or killed inpatients, during healthcare. This development is in contradiction to patient safety norms. A correctly designed hospital-wide ubiquitous system, using advanced inpatient identification and matching techniques, should provide correct medicine and dosage at the right time. Researchers are still making grouping proof protocol proposals based on the EPC Global Class 1 Generation 2 ver. 1.2 standard tags, for drug administration. Analyses show that such protocols make medication unsecure and hence fail to guarantee inpatient safety. Thus, the original goal of patient safety still remains. In this paper, a very recent proposal (EKATE) upgraded by a cryptographic function is shown to fall short of expectations. Then, an alternative proposal IMS-NFC which uses a more suitable and newer technology; namely Near Field Communication (NFC), is described. The proposed protocol has the additional support of stronger security primitives and it is compliant to ISO communication and security standards. Unlike previous works, the proposal is a complete ubiquitous system that guarantees full patient safety; and it is based on off-the-shelf, new technology products available in every corner of the world. To prove the claims the performance, cost, security and scope of IMS-NFC are compared with previous proposals. Evaluation shows that the proposed system has stronger security, increased patient safety and equal efficiency, at little extra cost.

Keywords

Inpatient medication Ubiquitous systems RFID NFC Authentication 

References

  1. 1.
    Bootman JL et al. (2006) Preventing medication errors: quality chasm series. http://www.iom.edu/~/media/Files/Report%20Files/2006/Preventing-Medication-Errors-Quality-Chasm-Series/medicationerrorsnew.pdf. Accessed 03 Apr 2014.
  2. 2.
    Kaushal, R., Bates, D. W., Landrigan, C., et al., Medication errors and adverse drug events in pediatric inpatients. The J of the American Med Association 285:2114–2120, 2001.CrossRefGoogle Scholar
  3. 3.
    (2006) Eurobarometer 2006 survey on medical errors, http://ec.europa.eu/public_opinion/archives/ebs/ebs_241_en.pdf. Accessed 03 Apr 2014.
  4. 4.
    Shojania, K. G., Duncan, B. W., McDonald, K. M., et al., Safe but sound: patient safety meets evidence-based medicine. J American Med Association 288:508–513, 2002.CrossRefGoogle Scholar
  5. 5.
    (2014) National Patient Safety Goals (NPSGs), http://www.jointcommission.org/assets/1/6/HAP_NPSG_Chapter_2014.pdf. Accessed 03 Apr 2014.
  6. 6.
    Aronson, J. K., Medication errors: what they are, how they happen, and how to avoid them. An Int J of Medicine 102(8):513–521, 2009. doi:10.1093/qjmed/hcp052.Google Scholar
  7. 7.
    Benner, P., Sheets, V., Uris, P., Malloch, K., Schwed, K., and Jamison, D., Individual, practice, and system causes of errors in nursing: a taxonomy. J of Nurs Adm 32(10):509–523, 2002.CrossRefGoogle Scholar
  8. 8.
    Lathela A, Hassinen M, Jylha V (2008) RFID and NFC in healthcare: safety of hospitals medication care. 2nd international conference on pervasive computing technologies for healthcare, PervasiveHealth 2008, IEEE, pp 241–244.Google Scholar
  9. 9.
    Songini ML (2006) Wal-Mart Details its RFID journey http://www.computerworld.com/s/article/109132/Wal_Mart_details_its_RFID_journey. Accessed 03 Apr 2014.
  10. 10.
    Yao, W., Chu, C. H., and Li, Z., The adoption and implementation of RFID technologies in healthcare: a literature review. J of Med Systems 36(6):3507–3525, 2012. doi:10.1007/s10916-011-9789-8.CrossRefGoogle Scholar
  11. 11.
    EPC Global Inc. (2008) EPC Global Class1 Gen2 RFID Specifications http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf. Accessed 03 Apr 2014.
  12. 12.
    (2010) Inf technology -- Radio frequency identification for item management -- Part 6: Parameters for air interface communications at 860 MHz to 960 MHz, http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=46149. Accessed 03 Apr 2014.
  13. 13.
    Najera, P., Lopez, J., and Roman, R., Real-time location and inpatient care systems based on passive RFID. J of Network and Computer Applications 34(3):980–989, 2011. doi:10.1016/j.jnca.2010.04.011.CrossRefGoogle Scholar
  14. 14.
    Lai, H. M., Lin, I. C., and Tseng, L. T., High-level managers’ considerations for RFID adoption in hospitals: an empirical study in Taiwan. J of Med Systems. 38(3):1–17, 2014. doi:10.1007/s10916-013-0003-z.Google Scholar
  15. 15.
    Juels A (2004) Yoking-proofs for RFID tags. Second IEEE annual conference on pervasive computing and communications workshops, pp. 14–17, 138–143.Google Scholar
  16. 16.
    Wu F, Kuo F, Liu LW (2005) The application of RFID on drug safety of inpatient nursing healthcare. 7th international conference on electronic commerce, pp. 85–92.Google Scholar
  17. 17.
    Sun, P. R., Wang, B. H., and Wu, F., A new method to guard inpatient medication safety by the implementation of RFID. J of Med Systems. 32(4):327–332, 2008. doi:10.1007/s10916-008-9137-9.CrossRefGoogle Scholar
  18. 18.
    Chen, C. L., and Wu, C. Y., Using RFID yoking proof protocol to enhance inpatient medication safety. J of Med Systems. 36:2849–2864, 2012. doi:10.1007/s10916-011-9763-5.CrossRefGoogle Scholar
  19. 19.
    Huang, H. H., and Ku, C. Y., A RFID grouping proof protocol for medication safety of inpatient. J of Med Systems 33(6):467–474, 2009. doi:10.1007/s10916-008-9207-z.CrossRefGoogle Scholar
  20. 20.
    Chien, H. Y., Yang, C. C., Wu, T. C., and Lee, C. F., Two RFID-based solutions to enhance inpatient medication safety. J of Med Systems 35(3):369–375, 2011. doi:10.1007/s10916-009-9373-7.CrossRefGoogle Scholar
  21. 21.
    Yen, Y. C., Lo, N. W., and Wu, T. C., Two RFID-based solutions for secure inpatient medication administration. J. of Med Systems. 36(5):2769–2778, 2012. doi:10.1007/s10916-011-9753-7.CrossRefGoogle Scholar
  22. 22.
    Peris-Lopez, P., Orfila, A., Mitrokotsa, A., and Van der Lubbe, J. C. A., A comprehensive RFID solution to enhance inpatient medication safety. International J of Med Informatics 80(1):13–24, 2011. doi:10.1016/j.ijmedinf.2010.10.008.CrossRefGoogle Scholar
  23. 23.
    Rosenbaum, B. P., Radio frequency identification (RFID) in health care: privacy and security concerns limiting adoption. J. of Med Systems. 38(19):1–6, 2014. doi:10.1007/s10916-014-0019-z.Google Scholar
  24. 24.
    Van Deursen T, Radomirovic S (2009) Algebraic attacks on RFID Protocols. Information security theory and practices. Smart devices, pervasive systems, and ubiquitous networks (WISTP'09). LNCS, 5746:38–51.Google Scholar
  25. 25.
    Khovratovich D, Nikolic I (2010) Rotational Cryptanalysis of ARX. 17th International Conference on Fast Software Encryption, FSE '10, pp. 333–346, 2010.Google Scholar
  26. 26.
    Özcanhan, M. H., and Dalkılıç, G., Mersenne twister based RFID authentication protocol. Turkish J of Electr Eng and Comput Sci, accepted to be published, doi:, 2013. doi:10.3906/elk-1212-95.Google Scholar
  27. 27.
    Lopez, P. P., Orfila, A., Hernandez-Castro, J. C., and van der Lubbe, J. C. A., Flaws on RFID grouping-proofs guidelines for future sound protocols. J of Netw and Computer Appl 34:833–845, 2011. doi:10.1016/j.jnca.2010.04.008.CrossRefGoogle Scholar
  28. 28.
    Chien, H. Y., Yang, C. C., Wu, T. C., and Lee, C. F., Two RFID-based solutions to enhance inpatient medication safety. J of Med Syst 35(3):369–375, 2011. doi:10.1007/s10916-009-9373-7.CrossRefGoogle Scholar
  29. 29.
    Wickboldt, A. K., and Piramuthu, S., Patient safety through RFID: vulnerabilities in recently proposed grouping protocols. J of Med Syst 36(2):431–435, 2012. doi:10.1007/s10916-010-9487-y.CrossRefGoogle Scholar
  30. 30.
    Özcanhan MH, Dalkılıç G, Utku S (2013) Analysis of two protocols using EPC Gen-2 tags for safe inpatient medication. Int Sym. on Innovations in Intell Syst and Appl., IEEE, pp 1–6.Google Scholar
  31. 31.
    Özcanhan, M. H., Dalkılıç, G., and Utku, S., Is NFC a better option instead of EPC Gen-2 in safe medication of inpatients. Radio Frequency Identification LNCS 8262:19–33, 2013.CrossRefGoogle Scholar
  32. 32.
    Kasper T, von Maurich I, Oswald D, Paar C (2011) Chameleon: A Versatile Emulator for Contactless Smartcards. Inf Security and Cryptology - ICISC 2010. LNCS, 6829:189–206.Google Scholar
  33. 33.
    Peris-Lopez, P., Safkhanim, M., Bagheri, N., and Naderi, M., RFID in eHealth: how combat medications errors and strengthen patient safety. J Med Biol Eng 33(4):363–372, 2013. doi:10.5405/jmbe.1276.CrossRefGoogle Scholar
  34. 34.
    Wu, S., Chen, K., and Zhu, Y., A secure lightweight RFID binding proof protocol for medication errors and patient safety. J of Med Systems. 36(5):2743–2749, 2012. doi:10.1007/s10916-011-9750-x.CrossRefGoogle Scholar
  35. 35.
    Bogdanov A, et al. (2007) PRESENT: An ultra-lightweight block cipher. Cryptographic Hardware and Embedded Systems, pp. 450–466, 2007.Google Scholar
  36. 36.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mehmet Hilal Özcanhan
    • 1
  • Gökhan Dalkılıç
    • 1
  • Semih Utku
    • 1
  1. 1.Department of Computer EngineeringDokuz Eylul UniversityIzmirTurkey

Personalised recommendations