A Review of Analytics and Clinical Informatics in Health Care

  • Allan F. Simpao
  • Luis M. Ahumada
  • Jorge A. Gálvez
  • Mohamed A. Rehman
Education & Training
Part of the following topical collections:
  1. Topical Collection on Education & Training

Abstract

Federal investment in health information technology has incentivized the adoption of electronic health record systems by physicians and health care organizations; the result has been a massive rise in the collection of patient data in electronic form (i.e. “Big Data”). Health care systems have leveraged Big Data for quality and performance improvements using analytics—the systematic use of data combined with quantitative as well as qualitative analysis to make decisions. Analytics have been utilized in various aspects of health care including predictive risk assessment, clinical decision support, home health monitoring, finance, and resource allocation. Visual analytics is one example of an analytics technique with an array of health care and research applications that are well described in the literature. The proliferation of Big Data and analytics in health care has spawned a growing demand for clinical informatics professionals who can bridge the gap between the medical and information sciences.

Keywords

Health care analytics Medical informatics Electronic health records Clinical decision support systems Integrated advanced information management systems Health Information Technology for Economic and Clinical Health Act 

References

  1. 1.
    Stark, P., Congressional intent for the HITECH Act. Am. J. Manag. Care 16:24–28, 2010.Google Scholar
  2. 2.
    Jamoom, E., Beatty, P., Bercovitz, A., Woodwell, D., Palso, K., and Rechsteiner, E., Physician adoption of electronic health record systems: United States, 2011. NCHS Data Brief 98:1–8, 2012.Google Scholar
  3. 3.
    Horner, P., and Basu, A., Analytics and the future of health care. Analytics 1:1–7, 2012.Google Scholar
  4. 4.
    Glaser, J., HITECH lays the foundation for more ambitious outcomes-based reimbursement. Am. J. Manag. Care 16:19–23, 2010.Google Scholar
  5. 5.
    Diamond, G. A., and Kaul, S., Evidence-based financial incentives for healthcare reform. Circ: Cardiovasc. Qual. Outcomes. 2:134–140, 2009.Google Scholar
  6. 6.
    Jacobs, A., The pathologies of big data. Commun. ACM 52:36–44, 2009.CrossRefGoogle Scholar
  7. 7.
    Wolfe, P., Making sense of big data. Proc. Natl. Acad. Sci. U. S. A. 110:18031–18032, 2013.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Costa, F. F., Big data in biomedicine. Drug Discov. Today. 2013.Google Scholar
  9. 9.
    Stead, W. W., Searle, J. R., Fessler, H. E., Smith, J. W., and Shortliffe, E. H., Biomedical informatics: changing what physicians need to know and how they learn. Acad. Med. 86:429–434, 2011.CrossRefGoogle Scholar
  10. 10.
    Davenport, T. H., Harris, J., and Shapiro, J., Competing on talent analytics. Harv. Bus. Rev. 88:52–8, 150, 2010.Google Scholar
  11. 11.
    Kudyba, S., Healthcare informatics: increasing efficiency and productivity. Taylor Francis, New York, 2010.CrossRefGoogle Scholar
  12. 12.
    Erhardt, R. A., Schneider, R., and Blaschke, C., Status of text-mining techniques applied to biomedical text. Drug Discov. Today 11:315–325, 2006.CrossRefGoogle Scholar
  13. 13.
    Michelson, J. D., Pariseau, J. S., and Paganelli, W. C., Assessing surgical site infection risk factors using electronic medical records and text mining. Am. J. Infect. Control 42:333–336, 2014.CrossRefGoogle Scholar
  14. 14.
    Gotz, D., Stavropoulos, H., Sun, J., and Wang, F., ICDA: a platform for intelligent care delivery analytics. AMIA Annu. Symp. Proc. 2012:264–273, 2012.Google Scholar
  15. 15.
    Miriovsky, B. J., Shulman, L. N., and Abernethy, A. P., Importance of health information technology, electronic health records, and continuously aggregating data to comparative effectiveness research and learning health care. J. Clin. Oncol. 30:4243–4248, 2012.CrossRefGoogle Scholar
  16. 16.
    Wharam, J. F., and Weiner, J. P., The promise and peril of healthcare forecasting. Am. J. Manag. Care 18:82–85, 2012.Google Scholar
  17. 17.
    Rojas, C. C., Patton, R. M., and Beckerman, B. G., Characterizing mammography reports for health analytics. J. Med. Syst. 35:1197–1210, 2011.CrossRefGoogle Scholar
  18. 18.
    Blount, M., Ebling, M. R., Eklund, J. M., James, A. G., McGregor, C., Percival, N., Smith, K. P., and Sow, D., Real-time analysis for intensive care: development and deployment of the artemis analytic system. IEEE Eng. Med. Biol. Mag. 29:110–118, 2010.CrossRefGoogle Scholar
  19. 19.
    Holdsworth, M. T., Fichtl, R. E., Raisch, D. W., Hewryk, A., Behta, M., Mendez-Rico, E., Wong, C. L., Cohen, J., Bostwick, S., and Greenwald, B. M., Impact of computerized prescriber order entry on the incidence of adverse drug events in pediatric inpatients. Pediatrics 120:1058–1066, 2007.CrossRefGoogle Scholar
  20. 20.
    van Rosse, F., Maat, B., Rademaker, C. M., van Vught, A. J., Egberts, A. C., and Bollen, C. W., The effect of computerized physician order entry on medication prescription errors and clinical outcome in pediatric and intensive care: a systematic review. Pediatrics 123:1184–1190, 2009.CrossRefGoogle Scholar
  21. 21.
    Chau, A., and Ehrenfeld, J. M., Using real-time clinical decision support to improve performance on perioperative quality and process measures. Anesthesiol. Clin. 29:57–69, 2011.CrossRefGoogle Scholar
  22. 22.
    Resetar, E., Reichley, R. M., Noirot, L. A., Dunagan, W. C., and Bailey, T. C., Customizing a commercial rule base for detecting drug-drug interactions. AMIA Annu. Symp. Proc. 1094, 2005.Google Scholar
  23. 23.
    Guzek, M., Zorina, O. I., Semmler, A., Gonzenbach, R. R., Huber, M., Kullak-Ublick, G. A., Weller, M., and Russmann, S., Evaluation of drug interactions and dosing in 484 neurological inpatients using clinical decision support software and an extended operational interaction classification system (Zurich Interaction System). Pharmacoepidemiol. Drug Saf. 20:930–938, 2011.Google Scholar
  24. 24.
    Slonimc, N., Carmeli, B., Goldsteen, A., Keller, O., Kent, C., and Rinott, R., Knowledge-analytics synergy in clinical decision support. Stud. Health Technol. Inform. 180:703–707, 2012.Google Scholar
  25. 25.
    Chan, M., Estève, D., Fourniols, J. Y., Escriba, C., and Campo, E., Smart wearable systems: current status and future challenges. Artif. Intell. Med. 56:137–156, 2012.CrossRefGoogle Scholar
  26. 26.
    Banaee, H., Ahmed, M. U., and Loutfi, A., Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors 13:17472–17500, 2013.CrossRefGoogle Scholar
  27. 27.
    Tseng, K. C., Hsu, C. L., and Chuang, Y. H., Designing an intelligent health monitoring system and exploring user acceptance for the elderly. J. Med. Syst. 37:9967, 2013.CrossRefGoogle Scholar
  28. 28.
    Baig, M. M., and Gholamhosseini, H., Smart health monitoring systems: an overview of design and modeling. J. Med. Syst. 37:9898, 2013.CrossRefGoogle Scholar
  29. 29.
    Schouten, P., Big data in health care: solving provider revenue leakage with advanced analytics. Healthc. Finan. Manag. 67:40–42, 2013.Google Scholar
  30. 30.
    Kudyba, S., and Gregorio, T., Identifying factors that impact patient length of stay metrics for healthcare providers with advanced analytics. Health Inf. J. 16:235–245, 2010.CrossRefGoogle Scholar
  31. 31.
    Bradley, P., and Kaplan, J., Turning hospital data into dollars. Healthc. Finan. Manage 64:64–68, 2010.Google Scholar
  32. 32.
    Costantino, M. E., Frey, B., Hall, B., and Painter, P., The influence of a postdischarge intervention on reducing hospital readmissions in a medicare population. Popul. Health Manag. 16:310–316, 2013.CrossRefGoogle Scholar
  33. 33.
    Buell, D., Leveraging data and analytics to generate new revenue. Healthc. Financ. Manage 67:40–2, 44, 2013.Google Scholar
  34. 34.
    Tufte, E. R., The visual display of quantitative information, 2nd edition. Graphics Press, Cheshire, 2001.Google Scholar
  35. 35.
    Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., and Becker, B. (Eds.), The data warehouse lifecycle toolkit, 2nd edition. Wiley, Hoboken, 2008.Google Scholar
  36. 36.
    Barton, D., and Court, D., Making advanced analytics work for you. Harv. Bus. Rev. 90:78–83, 128, 2012.Google Scholar
  37. 37.
    Thomas, J. J., and Cook, K. A., A visual analytics agenda. IEEE Comput. Graph. Appl. 26:10–13, 2006.CrossRefGoogle Scholar
  38. 38.
    Kumasaka, N., Nakamura, Y., and Kamatani, N., The textile plot: a new linkage disequilibrium display of multiple-single nucleotide polymorphism genotype data. PLoS One 5:e10207, 2010.CrossRefGoogle Scholar
  39. 39.
    Naumova, E. N., Visual analytics for immunologists: data compression and fractal distributions. Self Nonself 1:241–249, 2010.CrossRefGoogle Scholar
  40. 40.
    Chui, K. K., Wenger, J. B., Cohen, S. A., and Naumova, E. N., Visual analytics for epidemiologists: understanding the interactions between age, time, and disease with multi-panel graphs. PLoS One 6:e14683, 2011.CrossRefGoogle Scholar
  41. 41.
    Wang, T. D., Wongsuphasawat, K., Plaisant, C., and Shneiderman, B., Extracting insights from electronic health records: case studies, a visual analytics process model, and design recommendations. J. Med. Syst. 35:1135–1152, 2011.CrossRefGoogle Scholar
  42. 42.
    Mane, K. K., Bizon, C., Owen, P., Gersing, K., Mostafa, J., and Schmitt, C., Patient electronic health data-driven approach to clinical decision support. Clin. Transl. Sci. 4:369–371, 2011.CrossRefGoogle Scholar
  43. 43.
    Mane, K. K., Bizon, C., Schmitt, C., Owen, P., Burchett, B., Pietrobon, R., and Gersing, K., VisualDecisionLinc: a visual analytics approach for comparative effectiveness-based clinical decision support in psychiatry. J. Biomed. Inform. 45:101–106, 2012.CrossRefGoogle Scholar
  44. 44.
    Gálvez, J. A., Ahumada, L., Simpao, A. F., Lin, E. E., Bonafide, C. P., Choudhry, D., England, W. R., Jawad, A. F., Friedman, D., Sesok-Pizzini, D. A., and Rehman, M. A., Visual analytical tool for evaluation of 10-year perioperative transfusion practice at a children’s hospital. J. Am. Med. Inform. Assoc. 2013.Google Scholar
  45. 45.
    Kang, Y. A., Görg, C., and Stasko, J., How can visual analytics assist investigative analysis? Design implications from an evaluation. IEEE Trans. Vis. Comput. Graph 17:570–583, 2011.CrossRefGoogle Scholar
  46. 46.
    Goldsmith, M. R., Transue, T. R., Chang, D. T., Tornero-Velez, R., Breen, M. S., and Dary, C. C., PAVA: physiological and anatomical visual analytics for mapping of tissue-specific concentration and time-course data. J. Pharmacokinet. Pharmacodyn. 37:277–287, 2010.CrossRefGoogle Scholar
  47. 47.
    Perer, A., and Sun, J., MatrixFlow: temporal network visual analytics to track symptom evolution during disease progression. AMIA Annu. Symp. Proc. 2012:716–725, 2012.Google Scholar
  48. 48.
    Lo, Y. S., Lee, W. S., and Liu, C. T., Utilization of electronic medical records to build a detection model for surveillance of healthcare-associated urinary tract infections. J. Med. Syst. 37:9923, 2013.CrossRefGoogle Scholar
  49. 49.
    Rajwan, Y. G., Barclay, P. W., Lee, T., Sun, I. F., Passaretti, C., and Lehmann, H., Visualizing central line-associated blood stream infection (CLABSI) outcome data for decision making by health care consumers and practitioners-an evaluation study. Online J. Public Health Inform. 5:218, 2013.Google Scholar
  50. 50.
    Fouzas, S., Priftis, K. N., and Anthracopoulos, M. B., Pulse oximetry in pediatric practice. Pediatrics 128:740–752, 2011.CrossRefGoogle Scholar
  51. 51.
    Edelstein, P., Emerging directions in analytics. Predictive analytics will play an indispensable role in healthcare transformation and reform. Health Manag. Technol. 34:16–17, 2013.Google Scholar
  52. 52.
    Detmer, D. E., Munger, B. S., and Lehmann, C. U., Clinical informatics board certification: history, current status, and predicted impact on the clinical informatics workforce. Appl. Clin. Inform. 1:11–18, 2010.CrossRefGoogle Scholar
  53. 53.
    Lehmann, C. U., Shorte, V., and Gundlapalli, A. V., Clinical informatics sub-specialty board certification. Pediatr. Rev. 34:525–530, 2013.CrossRefGoogle Scholar
  54. 54.
    Galvez, J. A., Simpao, A. F., Utidjian, L. H., and Rehman, M. A., Clinical informatics: bridging the gap between physician and information technology. AAP News 11:14, 2013.Google Scholar
  55. 55.
    Kerr, W. T., Lau, E. P., Owens, G. E., and Trefler, A., The future of medical diagnostics: large digitized databases. Yale J. Biol. Med. 85:363–377, 2012.Google Scholar
  56. 56.
    Chawla, N. V., and Davis, D. A., Bringing big data to personalized healthcare: a patient-centered framework. J. Gen. Intern. Med. 28(Suppl 3):S660–S665, 2013.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Allan F. Simpao
    • 1
  • Luis M. Ahumada
    • 2
  • Jorge A. Gálvez
    • 1
  • Mohamed A. Rehman
    • 1
  1. 1.Department of Anesthesiology and Critical Care MedicinePerelman School of Medicine at the University of Pennsylvania and the Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Enterprise Analytics and ReportingThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations