Open Issues in Intelligent Personal Health Record – An Updated Status Report for 2012

  • Gang Luo
Original Paper


To improve the capability and usability of the personal health record (PHR) as a tool to empower consumers in the management of their own health, we have proposed the concept of an intelligent PHR (iPHR) and built a prototype iPHR system with four functions. These four functions use various health knowledge and computer science techniques to automatically provide users with personalized healthcare information to facilitate their well-being. This paper discusses several open issues in iPHR, including two enhancements to an existing function and two potential new functions. The two enhancements are for automatically compiling relevant self-care activities for each health issue and automatically identifying contraindicated self-care activities, respectively. One potential new function is personalized search for individual healthcare providers. Another potential new function is personalized local search for health-related services to help maintain patients in their homes. We include some preliminary thoughts on how to address these open issues with the hope to stimulate future research work on iPHR.


Personal health record Self-care activity Medical information extraction Automatic contraindication identification Personalized search for individual healthcare providers Personalized local search for health-related services 



We thank Selena Thomas, Guilherme Del Fiol, Libin Shen, Xiaotong Zhuang, Mollie R. Cummins, Linda S. Edelman, Leslie A. Lenert, Lewis J. Frey, Stéphane M. Meystre, Susan Terry, Qing T. Zeng, Chuck Norlin, John F. Hurdle, and Scott P. Narus for helpful discussions.


  1. 1.
    ACOG guidelines for exercise during pregnancy., 2012.
  2. 2.
    AIRS taxonomy homepage., 2012.
  3. 3.
    Agency for Healthcare Research and Quality (AHRQ). Coordinating care for adults with complex care needs in the patient-centered medical home: challenges and solutions., 2012.
  4. 4.
    Abrahamson, J. A., Fisher, K. E., Turner, A. G., et al., Lay information mediary behavior uncovered: Exploring how nonprofessionals seek health information for themselves and others online. J. Med. Libr. Assoc. 96(4):310–323, 2008.CrossRefGoogle Scholar
  5. 5.
    Agichtein, E., and Gravano, L., Snowball: extracting relations from large plain-text collections. Proceedings of ACM DL’00, pp. 85–94, 2000.Google Scholar
  6. 6.
    Aronson, A. R., and Lang, F., An overview of MetaMap: Historical perspective and recent advances. JAMIA 17(3):229–236, 2010.Google Scholar
  7. 7.
    Atack, L., Luke, R., and Chien, E., Evaluation of patient satisfaction with tailored online patient education information. Comput. Inform. Nurs. 26(5):258–264, 2008.CrossRefGoogle Scholar
  8. 8.
    Ananiadou, S., and Mcnaught, J., Text Mining for Biology and Biomedicine. Artech House, 2005.Google Scholar
  9. 9.
    Background brief executive summary: Community-based services organized for easy use (post summit)., 2008.
  10. 10.
    Batavia, M., Contraindications in Physical Rehabilitation: Doing No Harm. Saunders, 2006.Google Scholar
  11. 11.
    Burton, R., Improving care transitions. RWJ Health Policy Brief. September 13, 2012.
  12. 12.
    Bulechek, G. M., Butcher, H. K., and Dochterman, J. M. et al., Nursing Interventions Classification (NIC), 6th ed. Mosby, 2012.Google Scholar
  13. 13.
    Bernal-Delgado, E., and Fisher, E. S., Abstracts in high profile journals often fail to report harm. BMC Med. Res. Methodol. 8:14, 2008.CrossRefGoogle Scholar
  14. 14.
    Brin, S., and Page, L., The anatomy of a large-scale hypertextual web search engine. Comput. Netw. 30(1–7):107–117, 1998.Google Scholar
  15. 15.
    Benton, A., Ungar, L., Hill, S., et al., Identifying potential adverse effects using the web: A new approach to medical hypothesis generation. JBI 44(6):989–996, 2011.Google Scholar
  16. 16.
    Cerner Multum solutions and services (including a drug disease contraindications API)., 2012.
  17. 17.
    Clinical modules of FDB MedKnowledge (including a drug-disease contraindications module)., 2012.
  18. 18.
    Consumer Information and Education Committee. How We Choose Doctors: What Is and What Could Be. Midwest Business Group on Health, 2000.Google Scholar
  19. 19.
  20. 20.
    Chapman, W. W., Bridewell, W., Hanbury, P., et al., A simple algorithm for identifying negated findings and diseases in discharge summaries. JBI 34(5):301–310, 2001.Google Scholar
  21. 21.
    Cooper, T., and Collman, J., Managing information security and privacy in healthcare data mining: state of the art. In [22].Google Scholar
  22. 22.
    Chen, H., Fuller, S. S., Friedman, C. et al., Medical Informatics: Knowledge Management and Data Mining in Biomedicine. Springer, 2005.Google Scholar
  23. 23.
    Cohen, W. W., Hurst, M., and Jensen, L. S., A flexible learning system for wrapping tables and lists in HTML documents. Proceedings of WWW’02, pp. 232–241, 2002.Google Scholar
  24. 24.
    Chen, E. S., Hripcsak, G., Xu, H., et al., Automated acquisition of disease drug knowledge from biomedical and clinical documents: An initial study. JAMIA 15(1):87–98, 2008.Google Scholar
  25. 25.
    Cong, G., Jensen, C. S., and Wu, D., Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1):337–348, 2009.Google Scholar
  26. 26.
    Cole, C. L., Kanter, A. S., Cummens, M., et al., Using a terminology server and consumer search phrases to help patients find physicians with particular expertise. Stud. Health Technol. Inform. 107(Pt 1):492–496, 2004.Google Scholar
  27. 27.
    Campillos, M., Kuhn, M., Gavin, A. C., et al., Drug target identification using side-effect similarity (supplementary information). Science 321(5886):263–266, 2008.CrossRefGoogle Scholar
  28. 28.
    Chen, Y., Suel, T., and Markowetz, A., Efficient query processing in geographic web search engines. Proceedings of SIGMOD’06, pp. 277–288, 2006.Google Scholar
  29. 29.
    Casado, B. L., van Vulpen, K. S., and Davis, S. L., Unmet needs for home and community-based services among frail older Americans and their caregivers. J. Aging Health 23(3):529–553, 2011.CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Dugdale, D. C., Epstein, R., and Pantilat, S. Z., Time and the patient-physician relationship. J. Gen. Intern. Med. 14(S1):S34–S40, 1999.CrossRefGoogle Scholar
  32. 32.
    Doenges, M., Moorhouse, M., and Murr, A., Nursing Care Plans: Guidelines for Individualizing Client Care across the Life Span, 8th ed. F. A. Davis Company, 2009.Google Scholar
  33. 33.
    Drosou, M., and Pitoura, E., Search result diversification. SIGMOD Record 39(1):41–47, 2010.CrossRefGoogle Scholar
  34. 34.
    Epic MyChart homepage., 2012.
  35. 35.
    Etzioni, O., Cafarella, M., Downey, D., et al., Unsupervised named-entity extraction from the web: An experimental study. Artif. Intell. 65(1):91–134, 2005.CrossRefGoogle Scholar
  36. 36.
    Etminan, M., Carleton, B., and Rochon, P. A., Quantifying adverse drug events: Are systematic reviews the answer? Drug Saf. 27(11):757–761, 2004.CrossRefGoogle Scholar
  37. 37.
    Eames, S., Hoffmann, T., Worrall, L., et al., Stroke patients’ and carers’ perception of barriers to accessing stroke information. Top Stroke Rehabil. 17(2):69–78, 2010.CrossRefGoogle Scholar
  38. 38.
    Friedlin, J., and Duke, J., Applying natural language processing to extract and codify adverse drug reaction in medication labels., 2010.
  39. 39.
    Ford, E., and Hannon, T., Oregon Health Go Local: A retrospective look. J. Consum. Health Internet 14(2):95–108, 2010.CrossRefGoogle Scholar
  40. 40.
    Farmer, J. E., Marien, W. E., Clark, M. J., et al., Primary care supports for children with chronic health conditions: Identifying and predicting unmet family needs. J. Pediatr. Psychol. 29(5):355–367, 2004.CrossRefGoogle Scholar
  41. 41.
    Fahrmann, M., Pesch, W. T., and Interiano, L. F., The Louisiana Go Local experience. J. Consum. Health Internet 15(3):277–290, 2011.CrossRefGoogle Scholar
  42. 42.
    Fiszman, M., Rindflesch, T. C., and Kilicoglu, H., Summarizing drug information in Medline citations. AMIA Annu Symp Proc. 2006: 254–258.Google Scholar
  43. 43.
    GoogleGuide. Search operators., 2012.
  44. 44.
    Google Maps homepage., 2012.
  45. 45.
    Google Places API homepage., 2012.
  46. 46.
    Greenes, R.A., Clinical Decision Support: The Road Ahead. Academic Press, 2006.Google Scholar
  47. 47.
    Garten, Y., Coulet, A., and Altman, R. B., Recent progress in automatically extracting information from the pharmacogenomic literature. Pharmacogenomics 11(10):1467–1489, 2010.CrossRefGoogle Scholar
  48. 48.
    Galanter, W. L., Didomenico, R. J., and Polikaitis, A., A trial of automated decision support alerts for contraindicated medications using computerized physician order entry. JAMIA 12(3):269–274, 2005.Google Scholar
  49. 49.
    Gehrke, J., Korn, F., and Srivastava, D., On computing correlated aggregates over continual data streams. Proceedings of SIGMOD’01, pp. 13–24, 2001.Google Scholar
  50. 50.
    Golder, S., and Loke, Y., Search strategies to identify information on adverse effects: A systematic review. J. Med. Libr. Assoc. 97(2):84–92, 2009.CrossRefGoogle Scholar
  51. 51.
    Grumbach, K., Selby, J. V., Damberg, C., et al., Resolving the gatekeeper conundrum: What patients value in primary care and referrals to specialists. JAMA 282:261–266, 1999.CrossRefGoogle Scholar
  52. 52.
    Healthline homepage., 2012.
  53. 53.
    Healthline’s DocSearch., 2012.
  54. 54.
  55. 55.
  56. 56.
    Hart, P. D., California Consumers Talk about Health Care Quality: Findings from Focus Group Discussions. California Healthcare Foundation, 1999.Google Scholar
  57. 57.
    Han, J., Kamber, M., and Pei, J., Data Mining: Concepts and Techniques, 3rd ed. Morgan Kaufmann, 2011.Google Scholar
  58. 58.
    Holland, D. E., Mistiaen, P., and Bowles, K. H., Problems and unmet needs of patients discharged "home to self-care". Prof. Case Manag. 16(5):240–250, 2011.Google Scholar
  59. 59.
    Hoffmann, T., McKenna, K., and Herd, C., Written education materials for stroke patients and their carers: perspectives and practices of health professionals. Top Stroke Rehabil. 14(1):88–97, 2007.CrossRefGoogle Scholar
  60. 60.
    Hoffmann, T., McKenna, K., Worrall, L., et al., Randomised trial of a computer-generated tailored written education package for patients following stroke. Age Ageing 36(3):280–286, 2007.CrossRefGoogle Scholar
  61. 61.
    Hall, E. S., Poynton, M. R., Narus, S. P., et al., Modeling the distribution of nursing effort using structured labor and delivery documentation. JBI 41(6):1001–1008, 2008.Google Scholar
  62. 62.
    Hazell, L., and Shakir, S., Under-reporting of adverse drug reactions: A systematic review. Drug Saf. 29(5):385–396, 2006.CrossRefGoogle Scholar
  63. 63.
    Hilligoss, B., and Silbajoris, C., MedlinePlus goes local in NC: The development and implementation of NC health info. J. Consum. Health Internet 8(4):9–26, 2004.CrossRefGoogle Scholar
  64. 64.
    Hall, E. S., and Thornton, S. N., Generating nurse profiles from computerized labor and delivery documentation. AMIA Annu Symp Proc. 2008: 268–272.Google Scholar
  65. 65.
    Hafsteinsdóttir, T. B., Vergunst, M., Lindeman, E., et al., Educational needs of patients with a stroke and their caregivers: A systematic review of the literature. Patient Educ. Couns. 85(1):14–25, 2011.CrossRefGoogle Scholar
  66. 66.
    International Classification of Diseases (ICD-10) homepage., 2012.
  67. 67.
    Insider Pages Doctor Finder., 2012.
  68. 68.
    Ioannidis, J. P., Mulrow, C. D., and Goodman, S. N., Adverse events: The more you search, the more you find. Ann. Intern. Med. 144(4):298–300, 2006.CrossRefGoogle Scholar
  69. 69.
    Jones, D. A., Personal health records: Selected Webliography. J. Consum. Health Internet 16(3):307–315, 2012.CrossRefGoogle Scholar
  70. 70.
    Jha, A. K., Kuperman, G. J., Teich, J. M., et al., Identifying adverse drug events: Development of a computer-based monitor and comparison with chart review and stimulated voluntary report. JAMIA 5(3):305–314, 1998.Google Scholar
  71. 71.
    Jenkins, C. G., Marshall, J. G., and McDuffee, D., MedlinePlus goes local in NC: Context and concept. J. Consum. Health Internet 8(4):1–8, 2004.CrossRefGoogle Scholar
  72. 72.
    Kaiser Commission on Medicaid and the Uninsured. Medicaid and long-term care services and supports., 2009.
  73. 73.
    Kent, E. E., Arora, N. K., Rowland, J. H., et al., Health information needs and health-related quality of life in a diverse population of long-term cancer survivors. Patient Educ. Couns. 89(2):345–352, 2012.CrossRefGoogle Scholar
  74. 74.
    King, K. W., and Haefner, J. E., An investigation of the external physician search process. J. Health Care Mark. 8(2):4–13, 1988.Google Scholar
  75. 75.
    Korkontzelos, I., Mu, T., and Ananiadou, S., ASCOT: A text mining-based web-service for efficient search and assisted creation of clinical trials. BMC Med. Inform. Decis. Mak. 12(Suppl 1):S3, 2012.CrossRefGoogle Scholar
  76. 76.
    Krupat, E., Stein, T., Selby, J. V., et al., Choice of a primary care physician and its relationship to adherence among patients with diabetes. Am. J. Manag. Care. 8:777–784, 2002.Google Scholar
  77. 77.
    Kuperman, G. J., Teich, J. M., Gandhi, T. K., et al., Patient safety and computerized medication ordering at Brigham and Women’s Hospital. Jt. Comm. J. Qual. Improv. 27(10):509–521, 2001.Google Scholar
  78. 78.
    Kushmerick, N., Weld, D. S., and Doorenbos, R. B., Wrapper induction for information extraction. IJCAI (1) 1997: 729–737.Google Scholar
  79. 79.
    Krauss, M. W., Wells, N., Gulley, S., et al., Navigating systems of care: Results from a national survey of families of children with special health care needs. Children's Serv: Soc. Policy Res. Pract. 4(4):165–187, 2001.CrossRefGoogle Scholar
  80. 80.
    Kaszkiel, M., and Zobel, J., Passage retrieval revisited. Proceedings of SIGIR’97, pp. 178–185, 1997.Google Scholar
  81. 81.
  82. 82.
    Luo, G., Design and evaluation of the iMed intelligent medical search engine. Proceedings of ICDE'09, pp. 1379–1390, 2009.Google Scholar
  83. 83.
    Luo, G., Lessons learned from building the iMed intelligent medical search engine. Proceedings of EMBC’09, pp. 5138–5142, 2009.Google Scholar
  84. 84.
    Luo, G., Navigation interface for recommending home medical products. JMS 36(2):699–705, 2012.Google Scholar
  85. 85.
    Luo, G., Triggers and monitoring in intelligent personal health record. JMS 36(5):2993–3009, 2012.Google Scholar
  86. 86.
    Luo, J. S., Physician ratings Websites. Primary Psychiatr. 14(12):26–30, 2007.Google Scholar
  87. 87.
    Laiteerapong, N., Huang, E. S., and Chin, M. H., Prioritization of care in adults with diabetes and comorbidity. Ann. N. Y. Acad. Sci. 1243:69–87, 2011.CrossRefGoogle Scholar
  88. 88.
    Lv, Y., Lymberopoulos, D., and Wu, Q., An exploration of ranking heuristics in mobile local search. Proceedings of SIGIR’12, pp. 295–304, 2012.Google Scholar
  89. 89.
    Loke, Y. K., Price, D., and Herxheimer, A., Systematic reviews of adverse effects: Framework for a structured approach. BMC Med. Res. Methodol. 7:32, 2007.CrossRefGoogle Scholar
  90. 90.
    Luo, G., and Tang, C., Automatic home nursing activity recommendation. AMIA Annu Symp Proc. 2009: 401–405.Google Scholar
  91. 91.
    Luo, G., Tang, C., and Thomas, S. B., Intelligent personal health record: Experience and open issues. JMS 36(4):2111–2128, 2012.Google Scholar
  92. 92.
    Luo, G., Thomas, S. B., and Tang, C., Automatic home medical product recommendation. JMS 36(2):383–398, 2012.Google Scholar
  93. 93.
    LeClerc, C. M., Wells, D. L., and Craig, D., Falling short of the mark: Tales of life after hospital discharge. Clin. Nurs. Res. 11(3):242–263, 2002.CrossRefGoogle Scholar
  94. 94.
    Medical Home Portal homepage., 2012.
  95. 95.
    Medi-Span Clinical (including a drug disease contraindications API)., 2012.
  96. 96.
    MedlinePlus homepage., 2012.
  97. 97.
    Microsoft HealthVault homepage., 2012.
  98. 98.
    My HealtheVet of the U.S. Department of Veteran Affairs., 2012.
  99. 99.
    Moens, M., Information Extraction: Algorithms and Prospects in a Retrieval Context. Springer, 2006.Google Scholar
  100. 100.
    Miura, Y., Aramaki, E., Ohkuma, T. et al., Adverse-effect relations extraction from massive clinical records. Proceedings of NLPIX’10, pp. 75–83, 2010.Google Scholar
  101. 101.
    Mitra, M., Bogen, K., Long-Bellil, L. M., et al., Unmet needs for home and community-based services among persons with disabilities in Massachusetts. Disabil. Health J. 4(4):219–228, 2011.CrossRefGoogle Scholar
  102. 102.
    Markowetz, A., Chen, Y., and Suel, T. et al., Design and implementation of a geographic search engine. Proceedings of WebDB’05, pp. 19–24, 2005.Google Scholar
  103. 103.
    Meyer, M. M., and Derr, P., The Comfort of Home: a Complete Guide for Caregivers, 3rd ed. CareTrust Publications LLC, 2007.Google Scholar
  104. 104.
    Meystre, S., and Haug, P. J., Automation of a problem list using natural language processing. BMC Med. Inform. Decis. Mak. 5:30, 2005.CrossRefGoogle Scholar
  105. 105.
    Mandl, K. D., and Kohane, I. S., Tectonic shifts in the health information economy. N. Engl. J. Med. 358(16):1732–1737, 2008.CrossRefGoogle Scholar
  106. 106.
    Matsuyama, R. K., Kuhn, L. A., Molisani, A., et al., Cancer patients’ information needs the first nine months after diagnosis. Patient Educ. Couns. 90(1):96–102, 2013.CrossRefGoogle Scholar
  107. 107.
    Mandl, K. D., Mandel, J. C., Murphy, S. N., et al., The SMART Platform: Early experience enabling substitutable applications for electronic health records. JAMIA 19(4):597–603, 2012.Google Scholar
  108. 108.
    Meystre, S. M., Savova, G. K., Kipper-Schuler, K. C. et al., Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008: 128–144.Google Scholar
  109. 109.
    NC Health Info homepage., 2012.
  110. 110.
    Nicolaije, K. A., Husson, O., Ezendam, N. P., et al., Endometrial cancer survivors are unsatisfied with received information about diagnosis, treatment and follow-up: A study from the population-based PROFILES registry. Patient Educ. Couns. 88(3):427–435, 2012.CrossRefGoogle Scholar
  111. 111.
    Neuvirth, H., Ozery-Flato, M., Hu, J. et al., Toward personalized care management of patients at risk: the diabetes case study. Proceedings of KDD’11, pp. 395–403, 2011.Google Scholar
  112. 112.
    Office Ally personal health record homepage., 2012.
  113. 113.
    Overhage, J. M., Mamlin, B., Warvel, J. et al., A tool for provider interaction during patient care: G-CARE. Proc Annu Symp Comput Appl Med Care. 1995: 178–182.Google Scholar
  114. 114.
    Page, L., Brin, S., Motwani, R. et al., The PageRank citation ranking: Bringing order to the Web. Technical report, Stanford Digital Library Technologies Project, 1998.Google Scholar
  115. 115.
    Ponte, J. M., and Croft, B. W., A language modeling approach to information retrieval. Proceedings of SIGIR’98, pp. 275–281, 1998.Google Scholar
  116. 116.
    RAND Health. Consumers and health care quality information: need, availability, utility., 2001.
  117. 117.
    Reiter, E., and Dale, R., Building Natural Language Generation Systems. Cambridge University Press, 2000.Google Scholar
  118. 118.
    Rindflesch, T. C., and Fiszman, M., The interaction of domain knowledge and linguistic structure in natural language processing: Interpreting hypernymic propositions in biomedical text. JBI 36(6):462–477, 2003.Google Scholar
  119. 119.
    Radley, D. C., How, S. K., Fryer, A. K. et al., Rising to the challenge: Results from a scorecard on local health system performance., 2012.
  120. 120.
    Rubrichi, S., Quaglini, S., Spengler, A., et al., A system for the extraction and representation of summary of product characteristics content. Artif. Intell. Med. 2012. doi: 10.1016/j.artmed.2012.08.004.Google Scholar
  121. 121.
    Ricci, F., Rokach, L., Shapira, B. et al., Recommender Systems Handbook. Springer, 2010.Google Scholar
  122. 122.
    Seniors blue book homepage., 2012.
  123. 123.
    Sadeghi, B., How health care consumers use quality of care information to choose health coverage. Ph.D. thesis, University of California - Davis, 2007.Google Scholar
  124. 124.
    Sarawagi, S., Information extraction. Found. Trends Databases 1(3):261–377, 2008.CrossRefGoogle Scholar
  125. 125.
    Schneider, J. M., Electronic and personal health records: VA’s key to patient safety. J. Consum. Health Internet 14(1):12–22, 2010.CrossRefGoogle Scholar
  126. 126.
    Smith, C. A., Introduction to the Go Local special issue. J. Consum. Health Internet 15(3):235–245, 2011.CrossRefGoogle Scholar
  127. 127.
  128. 128.
    Stewart, M. A., Effective physician-patient communication and health outcomes: A review. CMAJ 152(9):1423–1433, 1995.Google Scholar
  129. 129.
    Ash, A. S., Shwartz, M., Peköz, E. A. et al., Comparing outcomes across providers. In: Iezzoni, L. I., (Ed.), Risk Adjustment for Measuring Healthcare Outcomes, 4th ed. Health Administration Press, 2012.Google Scholar
  130. 130.
    Sontag, D., Collins-Thompson, K., Bennett, P. N. et al., Probabilistic models for personalizing web search. Proceedings of WSDM’12, pp. 433–442, 2012.Google Scholar
  131. 131.
    Segura-Bedmar, I., Crespo, M., Pablo-Sánchez, C., et al., Resolving anaphoras for the extraction of drug-drug interactions in pharmacological documents. BMC Bioinforma. 11(S-2):1, 2010.CrossRefGoogle Scholar
  132. 132.
    Schmittdiel, J., Grumbach, K., Selby, J. V., et al., Effect of physician and patient gender concordance on patient satisfaction and preventive care practices. J. Gen. Intern. Med. 15(11):761–769, 2000.CrossRefGoogle Scholar
  133. 133.
  134. 134.
    Silbajoris, C., and McDuffee, D., Location matters: The Go Local developers’ perspective. J. Consum. Health Internet 15(3):246–255, 2011.CrossRefGoogle Scholar
  135. 135.
    Segura-Bedmar, I., Martínez, P., and de Pablo-Sánchez, C., Using a shallow linguistic kernel for drug-drug interactions extraction. JBI 44(5):789–804, 2011.Google Scholar
  136. 136.
    Schoen, C., Osborn, R., How, S., et al., In chronic condition: Experiences of patients with complex health care needs, in eight countries, 2008. Health Aff. 28(1):w1–w16, 2009.CrossRefGoogle Scholar
  137. 137.
    Schoen, C., Osborn, R., Huynh, P. T. et al., Primary care and health system performance: Adults’ experiences in five countries. Health Aff. Suppl Web Exclusives: W4-487–503, 2004.Google Scholar
  138. 138.
    Schmittdiel, J. A., Selby, J. V., Grumbach, K., et al., Choice of personal physician and patient satisfaction in a health maintenance organization. JAMA 278:1596–1599, 1997.CrossRefGoogle Scholar
  139. 139.
    Safran, D. G., Taira, D. A., Rogers, W. H., et al., Linking primary care performance to outcomes of care. J. Fam. Pract. 47(3):213–220, 1998.Google Scholar
  140. 140.
    Tari, L., Anwar, S., Liang, S., et al., Discovering drug-drug interactions: A text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics 26(18):i547–i553, 2010.CrossRefGoogle Scholar
  141. 141.
    Taylor, K., and Currow, D., A prospective study of patient identified unmet activity of daily living needs among cancer patients at a comprehensive cancer care centre. Aust. Occup. Ther. J. 50(2):79–85, 2003.CrossRefGoogle Scholar
  142. 142.
    Thom, D. H., Ribisl, K. M., Stewart, A. L., et al., Further validation and reliability testing of the trust in physician scale. Med. Care. 37(5):510–517, 1999.CrossRefGoogle Scholar
  143. 143.
    Taylora, M. V., and Stephensonb, P. L., Self-management of chronic disease: A Webliography. J. Consum. Health Internet 12(4):349–360, 2008.CrossRefGoogle Scholar
  144. 144.
  145. 145.
    Vogeli, C., Shields, A. E., Lee, T. A., et al., Multiple chronic conditions: Prevalence, health consequences, and implications for quality, care management, and costs. JGIM 22(Suppl 3):391–395, 2007.CrossRefGoogle Scholar
  146. 146.
    WebMD personal health record homepage., 2012.
  147. 147.
    White, S., Bissell, P., and Anderson, C., Patients’ perspectives on cardiac rehabilitation, lifestyle change and taking medicines: Implications for service development. J. Health Serv. Res. Policy. 15(Suppl 2):47–53, 2010.CrossRefGoogle Scholar
  148. 148.
    Wang, X., Hripcsak, G., Markatou, M., et al., Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: A feasibility study. JAMIA 16(3):328–337, 2009.Google Scholar
  149. 149.
    Washington, K. T., Meadows, S. E., and Elliott, S. G., Information needs of informal caregivers of older adults with chronic health conditions. Patient Educ. Couns. 83(1):37–44, 2011.CrossRefGoogle Scholar
  150. 150.
    Workmana, T. E., and Stoddartb, J. M., Building online health resources using freely available tools: The goLocalUtah experience. J. Consum. Health Internet 11(1):15–31, 2007.CrossRefGoogle Scholar
  151. 151.
    Wang, F., Sun, J., and Ebadollahi, S., Composite distance metric integration by leveraging multiple experts’ inputs and its application in patient similarity assessment. Stat. Anal. Data Mining 5(1):54–69, 2012.MathSciNetCrossRefGoogle Scholar
  152. 152.
    Wang, A. Y., Sable, J. H., and Spackman, K. A., The SNOMED clinical terms development process: refinement and analysis of content. AMIA Annu Symp Proc. 2002: 845–849.Google Scholar
  153. 153.
    Xu, R., Supekar, K., Morgan, A. et al., Unsupervised method for automatic construction of a disease dictionary from a large free text collection. AMIA Annu Symp Proc. 2008: 820–824.Google Scholar
  154. 154.
    Yelp homepage., 2012.
  155. 155.
    Garcia-Molina, H., Ullman, J. D., and Widom, J., Database Systems: The Complete Book, 2nd ed. Prentice Hall, 2008.Google Scholar
  156. 156.
    Witten, I. H., Frank, E., and Hall, M. A., Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed. Morgan Kaufmann, 2011.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biomedical InformaticsUniversity of UtahSalt Lake CityUSA

Personalised recommendations