Journal of Medical Systems

, Volume 36, Supplement 1, pp 5–9 | Cite as

Knowledge Acquisition for Medical Diagnosis Using Collective Intelligence

  • G. Hernández-Chan
  • A. Rodríguez-González
  • G. Alor-Hernández
  • J. M. Gómez-Berbís
  • M. A. Mayer-Pujadas
  • R. Posada-Gómez
Original Paper

Abstract

The wisdom of the crowds (WOC) is the process of taking into account the collective opinion of a group of individuals rather than a single expert to answer a question. Based on this assumption, the use of processes based on WOC techniques to collect new biomedical knowledge represents a challenging and cutting-edge trend on biomedical knowledge acquisition. The work presented in this paper shows a new schema to collect diagnosis information in Diagnosis Decision Support Systems (DDSS) based on collective intelligence and consensus methods.

Keywords

Collective intelligence Data knowledge acquisition Medical diagnosis Wisdom of the crowds 

Notes

Conflict of interests

Authors declare no conflict of interest.

References

  1. 1.
    Huddle, T., Viewpoint: Teaching Professionalism: Is Medical Morality a Competency? Academic Medicine 80(10):885–891, 2005.CrossRefGoogle Scholar
  2. 2.
    McCue, S., Morgenstern, H., and Berkman, L., The impact of social Stressors and Social networks on pediatric medical care use. Medical Care. 23(8):946–959, 1985.CrossRefGoogle Scholar
  3. 3.
    Heylighen, F., Collective Intelligence and its Implementation on the Web: Algorithms to Develop a Collective Mental Map. Computational & Mathematical Organization Theory 5(3):253–280, 1999.MATHCrossRefGoogle Scholar
  4. 4.
    De Kerckhove, D., Connected Intelligence. Institute of Governance. Somerville House, Toronto, 2009.Google Scholar
  5. 5.
    Bonebeau, E., Decisions 2.0: The power of collective intelligence. MIT Sloan Management Review. 50(2):44–53, 2009.Google Scholar
  6. 6.
    Charlin, B., Tardif, J., and Boshuizen, H., Scripts and medical diagnostic knowledge: Theory and applications for clinical reasoning instruction and research. Academic Medicine. 75(2):182–190, 2000.CrossRefGoogle Scholar
  7. 7.
    Friedman, C., Gatti, G., Franz, T., Murphy, G., Wolf, F., Heckerling, P., Fine, P., Miller, T., and Elstein, A., Do physicians know when their diagnoses are correct? Implications for decision support and error reduction. Journal of General. Internal Medicine 20(4):334–339, 2005.CrossRefGoogle Scholar
  8. 8.
    Gruber, T., Collective Knowledge Systems: Where the Social Web meets the Semantic Web. Web Semantics: Science, Services and Agents on the World Wide Web 6:4–13, 2008.CrossRefGoogle Scholar
  9. 9.
    Luo, W., and Najdawi, M., Trust-Building measures: A review of consumer web portals. Commun. ACM 47(1):109–113, 2004.CrossRefGoogle Scholar
  10. 10.
    Mahling, D., Sorrows, B., & Skogseid, I. (1995). A Collaborative Environment for Semi-Structured Medical Problem Based Learning. Proceedings of Computer-Supported Collaborative Learning. 218–225.Google Scholar
  11. 11.
    Sakellaropoulos, G., Kagadis, G., Karystianos, C., Karnabatidis, D., Constatntoyannis, C., and Nikiforidis, G., An experimental environment for the production, exchange and discussion of fused radiology images, for the management of patients with residual brain tumour disease. Med Inform. 28(2):135–146, 2003.CrossRefGoogle Scholar
  12. 12.
    Marzollo, B. (2005). DICOEMS: A Diagnosis Collaborative Environment for Medical Relevant Situations. Presented at Med-e-tel 2005 Conference in Luxembourg.Google Scholar
  13. 13.
    Alberola, C., Cárdenes, R., Martín, M., Martín, M. A., Rodríguez-Florido, M., & Ruiz-Alzola, J. (2000). diSNei: A Collaborative Environment for Medical Images Analysis and Visialization. In: Anthony A. DiGioia, Scott Delp, editors. Medical Image computing and computer-assisted interventions. Lecture notes in computer science. 1935. 814–823Google Scholar
  14. 14.
    Ruiz-Alzola, J. (2000). diSNei: A Collaborative Environment for Medical Images Analysis and Visualization. In Medical Image Computing and Computer-Assisted Intervention. In: Anthony A. DiGioia, Scott Delp, editors. Medical image computing and computer-assisted interventions. Lecture notes in computer science. 1935. 814–23.Google Scholar
  15. 15.
    Chronaki, C., Katehakis, D., Zabulis, X., Tsiknakis, M., and Orphanoudakis, S., WebOnCOLL: Medical Collaboration in Regional Healthcare Networks. IEEE Trans. Inf. Technol. Biomed. 1(4):257–269, 1997.CrossRefGoogle Scholar
  16. 16.
    Avouris, N., Cooperating knowledge-based systems for environmental decision support. Knowledge-Based Systems 8(1):39–54, 1995.CrossRefGoogle Scholar
  17. 17.
    Alor-Hernández, G., Pérez-Gallardo, Y., Posada-Gómez, R., Cortes-Robles, G., Rodríguez-González, A., & Aguilar-Laserre, A .(2012). iPixel: A visual content-based and semantic search engine for retrieving digitized mammograms by using collective intelligence. Informatics for Health and Social Care. Early online. 1–18.Google Scholar
  18. 18.
    Zhdanova, A. (2008). Community-driven ontology construction in social networking portals. Web Intelligence and Agent Systems: An International Journal. 6. 93–121.Google Scholar
  19. 19.
    Jones, J., and Hunter, D., Consensus methods for medical and health services research. British Medical Journal 311:376–380, 1995.CrossRefGoogle Scholar
  20. 20.
    Fink, A., Kosecoff, J., Chassin, M., and Brook, R., Consensus Methods: Characteristics and Guidelines for use. Am. J. Public Health 74(9):979–983, 1984.CrossRefGoogle Scholar
  21. 21.
    Segaran, T. (2007). Programming Collective Intelligence Building Smart Web 2.0 Applications. O’Reilly Media, Sebastopol, CA.Google Scholar
  22. 22.
    Karapiperis, S., and Apostolou, D., Consensus Building in Collaborative Ontology Engineering Process. Journal of Universal Knowledge Management. 1(3):199–216, 2006.Google Scholar
  23. 23.
    García-Crespo, A., Rodríguez, A., Mencke, M., Gómez-Berbís, J. M., and Colomo-Palacios, R., ODDIN: Ontology-driven differential diagnosis based on logical inference and probabilistic refinements. Expert Syst. Appl. 37(3):2621–2628, 2010.CrossRefGoogle Scholar
  24. 24.
    Rodríguez-González, A., Hernandez-Chan, G., Colomo-Palacios, R., Gomez-Berbis, J.M., García-Crespo, A., Alor-Hernandez, G., Valencia-Garcia, R. (2012). Towards an Ontology to support semantics enabled Diagnostic Decision Support Systems. Special issue on Semantic Web and Healthcare. Current Bioinformatics.Google Scholar
  25. 25.
    Bertaud-Gounot, V., Duvauferrier, R., and Burgun, A., Ontology and medical diagnosis. Inform Health Soc Care. 37(1):22–32, 2012.CrossRefGoogle Scholar
  26. 26.
    Uschold, M., and Gruninger, M., Ontologies and semantics for seamless connectivity. SIGMOD Record. 33(4):58–64, 2004.CrossRefGoogle Scholar
  27. 27.
    Kaplan, B., Evaluating informatics applications—clinical decision support systems literature review. International Journal of Medical informatics 64(1):15–37, 2001.CrossRefGoogle Scholar
  28. 28.
    Rodríguez-González, A., Aplicación de tecnologías semánticas para la creación de sistemas inteligentes de diagnóstico diferencial de alta sensibilidad en medicina. Tesis Doctoral. Universidad de Murcia, España, 2012.Google Scholar
  29. 29.
    Bizer, C., Heath, T., and Berners-Lee, T., Linked Data - The Story So Far. International Journal on Semantic Web and Information Systems (IJSWIS) 5(3):1–22, 2009.CrossRefGoogle Scholar
  30. 30.
    Colomo-Palacios, R., Sánchez-Cervantes, J. L., Alor-Hernández, G., and Rodríguez-González, A., Linked Data: Perspectives for IT Professionals. International Journal of Human Capital and Information Technology Professionals 3(3):1–12, 2012.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • G. Hernández-Chan
    • 1
  • A. Rodríguez-González
    • 2
  • G. Alor-Hernández
    • 3
  • J. M. Gómez-Berbís
    • 1
  • M. A. Mayer-Pujadas
    • 4
  • R. Posada-Gómez
    • 3
  1. 1.Computer Science DepartmentUniversidad Carlos III de MadridLeganés, MadridSpain
  2. 2.Bioinformatics at Centre for Plant Biotechnology and Genomics UPM-INIAMadridSpain
  3. 3.Division of Research and Postgraduate StudiesInstituto Tecnológico de OrizabaOrizabaMexico
  4. 4.Research Programme on Biomedical Informatics (GRIB), IMIM-Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations