Journal of Medical Systems

, Volume 36, Issue 5, pp 2947–2958 | Cite as

Fuzzy Rule-Based Expert System for Evaluating Level of Asthma Control

  • Maryam Zolnoori
  • Mohammad Hosain Fazel Zarandi
  • Mostafa Moin
  • Mehran Taherian
ORIGINAL PAPER

Abstract

Asthma control is a final goal of asthma therapy process. Despite outstanding progress in discovering various variables affecting asthma control levels, disregarding some of them by physicians and variables’ inherent uncertainty are the major causes of underestimating of asthma control levels and as a result asthma morbidity and mortality. In this paper, we provide an intelligent fuzzy system as a solution for this problem. Inputs of this system are composed of 14 variables organized in five modules of respiratory symptoms severity, bronchial obstruction, asthma instability, current treatment, and quality of life. Output of this system is degree of asthma control defined in the score (0–10). Evaluation of performance of this system by 42 asthmatic patients at asthma, allergy, immunology research center of Emam Khomeini hospital, Tehran, Iran reinforces that the system’s results not only correspond with the evaluations of experienced asthma physicians, but represents slight differences in the levels of asthma control between asthmatic patients.

Keywords

Asthma Asthma level control Evaluation Fuzzy Expert system 

References

  1. 1.
    Ml, L., Guideline-defined asthma control: a challenge for primary care. Eur. Respir. J. 31:229–231, 2007.Google Scholar
  2. 2.
    Blaiss, M., Manjunath, R., Dalal, A., and Jhingran, P., Assessment of asthma control in a united states population. J. Allergy Clin. Immunol. 19:316–371, 2007.Google Scholar
  3. 3.
    Cardarelli, W. J., Asthma: are we monitoring the correct measures? Popul. Health Manag. 12(2):87–94, 2009.CrossRefGoogle Scholar
  4. 4.
    Janson, C., Stephens, P. K., Foucard, T., Alving, K., and Nordvall, S. L., Risk factors associated with allergic and non-allergic asthma in adolescents. Clin. Respir. J. 1(1):16–22, 2007.CrossRefGoogle Scholar
  5. 5.
    Aas, K., Heterogeneity of bronchial asthma. Allergy 36:3–14, 1981.CrossRefGoogle Scholar
  6. 6.
    Brooks, S. M., Bernstein, L., Raghuprasad, P. K., Maccia, C. A., and Mieczkowski, L., Assessment of airway hyperresponsiveness in chronic stable asthma. J. Allergy Clin. Immunol. 85:17–26, 1996.CrossRefGoogle Scholar
  7. 7.
    Combescure, C., Chanez, P., Saint-Pierre, P., Daurès, J. P., Proudhon, H., and Godard, P., Assessment of variations in control of asthma over time. Eur. Respir. J. 22:298–304, 2003.CrossRefGoogle Scholar
  8. 8.
    Shout, J. W., Visness, M. C., Enright, P., Lamm, C., Shapiro, G., Gan, N. V., Adams, G. K., and Mitchell, H. E., Classification of asthma severity in children: The contribution of pulmonary function testing. Arch. Pediatr. Adolesc. Med. 160:844–850, 2008.Google Scholar
  9. 9.
    Juniper, E. F., O’Byrne, P. M., Guyatt, G. H., Ferrie, P. J., and King, D. R., Development and validation of a questionair to measure asthma control. Eru. Respi. J. 14:902–907, 1999.CrossRefGoogle Scholar
  10. 10.
    Robert, N. A., Sorkness, C. A., Kosinski, M., et al., Development of asthma control test: a survey for assessing asthma control. J. Allergy Clin. Immunol. 113(1):59–65, 2006.Google Scholar
  11. 11.
    Innocent, P. R., and John, R. I., Computer aided fuzzy medicine diagnosis. Inform. Sci. 162:81–104, 2004.CrossRefGoogle Scholar
  12. 12.
    Pedrycz, W., Why triangular membership functions? Fuzzy. Set. Syst. 64(1):21–3, 1994.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zolnoori, M., Fazel Zarandi, M. H., and Moein, M., Computer-Aided Intelligent System for Diagnosing Pediatric Asthma. J. Med. Syst. 2010; [Epub ahead of print].Google Scholar
  14. 14.
    Sacco, P., Wertz, D. A., Pollack, M., Bohn, R., Rodgers, K., and Sullivan, S., Impact of asthma control on quality of life. J. Allergy Clin. Immunol. 123(2):S115, 2009.CrossRefGoogle Scholar
  15. 15.
    Murray, C. S., Poletti, G., Kebadz, T., Morris, J., Woodcock, A., Johnston, S. L., and Custovic, A., Study of modifiable risk factors for asthma exacerbations: virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax. 61:376–382, 2006.CrossRefGoogle Scholar
  16. 16.
    Yan, D. C., Ou, L. S., Tsai, T. L., Wu, W. F., and Huang, J. L., Prevalence and severity of symptoms of asthma, rhinitis, and eczema in 13- to 14-year-old children in Taipei, Taiwan. Ann. Allergy Asthma Immunol. 95(6):579–585, 2005.CrossRefGoogle Scholar
  17. 17.
    Shout, J. W., Visness, M. C., Enright, P., Lamm, C., Shapiro, G., Gan, N. V., Adams, G. K., and Mitchell, H. E., Classification of asthma severity in children: The contribution of pulmonary function testing. Arch. Pediatr. Adolesc. Med. 160:844–850, 2006.CrossRefGoogle Scholar
  18. 18.
    Global Initiative for Asthma, Global Strategy for Management and Prevention, National Institutes of Health, National Heart, Lung, and Blood Institute, NIH publication. 2007.Google Scholar
  19. 19.
    Bussamra, H. M., Cukier, A., Stelmach, R., and Rodrigues, C. J., Evaluation of the magnitude of the bronchodilator response in children and adolescents with asthma. Chest. 127:530–535, 2005.CrossRefGoogle Scholar
  20. 20.
    VanDellena, Q. M., Stronksb, K., Bindelsc, P. J. E., Oryd, F. G., Bruild, J., and van Aalderena, W. M. C., Predictors of asthma control in children from different ethnic origins living in Amsterdam. Respir. Med. 101(4):779–85, 2007.CrossRefGoogle Scholar
  21. 21.
    Bacharier, L. B., Strunk, R. C., Mauger, D., White, D., Lemanske, R. F., and Sorkness, C. A., Classifying asthma severity in children-mismatch between symptoms, medication use, and lung function. Am. J. Respir. Crit. Care Med. 170(4):426–432, 2004.CrossRefGoogle Scholar
  22. 22.
    Robin, S., Everhart, R., and Fiese, B., Asthma severity and child quality of life in pediatric asthma: a systematic review. Patient Educ. Couns. 75(2):162–168, 2009.CrossRefGoogle Scholar
  23. 23.
    Hanania, A. N., Revisiting asthma control: how should it best be defined? Pulm. Pharmacol. Ther. 20(5):483–492, 2006.CrossRefGoogle Scholar
  24. 24.
    Gautier, V., Redier, H., Pujol, J. L., Bousquet, J., Proundhon, H., Michel, C., Daures, J. P., Michel, F. B., and Godard, Ph, Comparison of an expert system with other clinical scores for the evaluation of the severity of asthma. Eur. Respir. J. 9:58–54, 1996.CrossRefGoogle Scholar
  25. 25.
    Redier, H., Daures, J. P., Michel, C., Proudhon, H., Vervloet, D., Charpin, D., Marsac, J., Dusser, D., Brambilla, C., Wallaert, B., Kopferschmitt, M. C., Pauli, G., Taytard, A., Cogis, O., Michel, F. B., and Godard, P., Assessment of the severity of asthma by an expert system: description and evaluation. Am. J. Respir. Crit. Care Med. 151(21):345–352, 1995.Google Scholar
  26. 26.
    Sefion, I., Ennaji, A., Gailhardou, M., and Canu, S., ADEMA: a decision support system for asthma health care. Stud. Health Technol. Inform. 95:623–528, 2003.Google Scholar
  27. 27.
    Porter, S. C., Patients as experts: a collaborative performance support system. Proc AMIA Symp. 548–552, 2001.Google Scholar
  28. 28.
    Glykas, M., and Chytas, P., Technological innovations in asthma patient monitoring and care. Expert. Syst. Appl. 27(1):121–123, 2004.CrossRefGoogle Scholar
  29. 29.
    Dl, S., and Aronsky, D., Biomedical informatics applications for asthma care: a systematic review. J. Am. Med. Inform. Assoc. 13(14):418–427, 2006.Google Scholar
  30. 30.
    Kelly, K. J., Walsh-Kelly, C. M., Barthell, E., Rogalinski, S., Christenson, P., and Grabowski, L., Analysis of pediatric asthma patient presenting to the emergency room using a web based tracking system. J. Allergy Clin. Immunol. 113(2):13–36, 2004.CrossRefGoogle Scholar
  31. 31.
    Zeitz, H., Lutfiyya, M., McCullough, J., and Henley, E., Using geographic information system (GIS) software to examine US adult asthma prevalence and healthcare services disparities. J. Allergy Clin. Immunol. 117(2):S180, 2005.CrossRefGoogle Scholar
  32. 32.
    Sanders, Dl, and Aronsky, D., Biomedical informatics applications for asthma care: a systematic review. J. Am. Med. Inform. Assoc. 13(14):418–427, 2006.CrossRefGoogle Scholar
  33. 33.
    Phuong, H. N., and Kreinovich, V., Fuzzy logic and its applications in medicine. Int. J. Med. Inform. 62:165–173, 2001.CrossRefGoogle Scholar
  34. 34.
    Zadeh, A. L., Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2):103–109, 1996.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Stoloff, W. S., Boushey, A. H., and Francisco, S., Severity, control, and responsiveness in asthma. J. Allergy Clin. Immunol. 117(3):519–529, 2006.CrossRefGoogle Scholar
  36. 36.
    Van Dellena, Q., Stronks, K., Bindels, P., Öry, F., Bruil, J., and Van Aalderena, W., Predictors of asthma control in children from different ethnic origins living in Amsterdam. Respir. Med. 101(4):779–785, 2007.CrossRefGoogle Scholar
  37. 37.
    Bellamya, D., and Harrisb, T., Poor perceptions and expectations of asthma control: results of the International Control of Asthma Symptoms (ICAS) survey of patients and general practitioners. Prim. Care Respir. J. 14:252–258, 2005.CrossRefGoogle Scholar
  38. 38.
    Cohen’s kappa, http://en.wikipedia.org/wiki/Cohen’s_kappa, Date of access: January 2011.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maryam Zolnoori
    • 1
  • Mohammad Hosain Fazel Zarandi
    • 2
  • Mostafa Moin
    • 3
  • Mehran Taherian
    • 4
  1. 1.Mathematic and informatics group, ACECR, Department of Information Technology ManagementTarbiat Modares UniversityTehranIran
  2. 2.Faculty of Industrial EngineeringAmirkabir UniversityTehranIran
  3. 3.Asthma, Immunology, Allergy Research CenterTehran UniversityTehranIran
  4. 4.Shahid Beheshti of Medical Science and Health ServicesTehranIran

Personalised recommendations