Journal of Medical Systems

, Volume 36, Issue 4, pp 2471–2481 | Cite as

SeDeLo: Using Semantics and Description Logics to Support Aided Clinical Diagnosis

  • Alejandro Rodríguez-González
  • Jose Emilio Labra-Gayo
  • Ricardo Colomo-Palacios
  • Miguel A. Mayer
  • Juan Miguel Gómez-Berbís
  • Angel García-Crespo


Automated medical diagnosis systems based on knowledge-oriented descriptions have gained momentum with the emergence of semantic descriptions. The objective of this paper is to propose a normalized design that solves some of the problems which have been detected by authors in previous tools. The authors bring together two different technologies to develop a new clinical decision support system: description logics aimed at developing inference systems to improve decision support for the prevention, treatment and management of illness and semantic technologies. Because of its new design, the system is capable of obtaining improved diagnostics compared with previous efforts. However, this evaluation is more focused in the computational performance, giving as result that description logics is a good solution with small data sets. In this paper, we provide a well-structured ontology for automated diagnosis in the medical field and a three-fold formalization based on Description Logics with the use of Semantic Web technologies.


Description logics Semantic technologies Clinical diagnosis Ontologies 



This work is supported by the Spanish Ministry of Industry, Tourism, and Commerce under the project TRAZAMED (IPT-090000-2010-007).


  1. 1.
    O’Sullivan, D., and Dooley, L., Collaborative innovation for the management of information technology resources. Int. J. Hum. Cap. Inf. Technol. Professionals. 1(1):16–30, 2010.CrossRefGoogle Scholar
  2. 2.
    Ammenwerth, E., Schnell-Inderst, P., Machan, C., and Siebert, U., The effect of electronic prescribing on medication errors and adverse drug events: A systematic review. J. Am. Med. Inform. Assoc. 15(5):585–600, 2008.CrossRefGoogle Scholar
  3. 3.
    Amit, X. G., Neill, K. J. A., Heather, M. M., Rosas-Arellano, P., Devereaux, P. J., Beyene, J., Sam, J., and Haynes, R. B., Effects of Computerized Clinical Decision Support Systems on Practitioner Performance and Patient Outcomes: A Systematic Review. J. Am. Med. Assoc. 293(10):1223–1238, 2005.CrossRefGoogle Scholar
  4. 4.
    García-Crespo, A., Rodríguez-González, A., Colomo-Palacios, R., Labra-Gayo, J. E., Gómez-Berbís, J. M., and Alor-Hernández, G., Automated Diagnosis though Ontologies and Logical Descriptions: the ADONIS approach. International Journal of Decision Support System Technology (IJDSST). 3(1):21–39, 2011.Google Scholar
  5. 5.
    Wright, A., and Sittig, D. F., A four-phase model of the evolution of clinical decision support architectures. Int. J. Med. Inform. 77(10):641–649, 2008.CrossRefGoogle Scholar
  6. 6.
    Sim, I., Gorman, P., Greenes, R., Haynes, R., Kaplan, B., Lehmann, H., and Tang, P. C., Clinical decision support systems for the practice of evidence based medicine. J. Am. Med. Assoc. 8(6):527–534, 2001.CrossRefGoogle Scholar
  7. 7.
    Kawamoto, K., Houlihan, C. A., Balas, E. A., and Lobach, D. F., Improving clinical practice using clinical decision support systems: A systematic review of trials to identify features critical to success. Br. Med. J. 330:765–768, 2005.CrossRefGoogle Scholar
  8. 8.
    Osheroff, J. A., Teich, J. M., Middleton, B., Steen, E. B., Wright, A., and Detmer, D. E., A roadmap for National action on clinical decision support. J. Am. Med. Inform. Assoc. 14(2):141–145, 2007.CrossRefGoogle Scholar
  9. 9.
    Sittig, D. F., Wright, A., Osheroff, J. A., Middleton, B., Teich, J. M., Ash, J. S., Campbell, E., and Bates, D. W., Grand challenges in clinical decision support. J. Biomed. Inform. 41(2):387–392, 2008.CrossRefGoogle Scholar
  10. 10.
    Kuperman, G. J., Bobb, A., Payne, T. H., Avery, A. J., Gandhi, T. K., Burns, G., Classen, D. C., and Bates, D. W., Medication-related clinical decision support in computerized provider order entry systems: A review. J. Am. Med. Inform. Assoc. 14(1):29–40, 2007.CrossRefGoogle Scholar
  11. 11.
    Shortliffe, E. H., Computer-based medical consultations: MYCIN: Elsevier Publishing, New York, NY, 1976Google Scholar
  12. 12.
    Suwa, M., Scott, A. C., and Shortliffe, E. H., An approach to verifying completeness and consistency in a rule-based expert system. AI Mag. 3(4):16–21, 1982.Google Scholar
  13. 13.
    Gutiérrez-Estrada, J. C., De-Pedro, S. E., López-Luque, R., Pulido-Calvo, I., SEDPA, an expert system for disease diagnosis in eel rearing systems. Aquac. Eng. 33(2):110–125, 2005.CrossRefGoogle Scholar
  14. 14.
    Broverman, C. A., Standards for clinical decision support systems. J. Healthc. Inf. Manag. 13(2):23–31, 1999.Google Scholar
  15. 15.
    Berlin, A., Sorani, M., and Sim, I., A taxonomic description of computer-based clinical decision support systems. J. Biomed. Inform. 39(6):656–667, 2006.CrossRefGoogle Scholar
  16. 16.
    Mangiameli, P., West, D., and Rampal, R., Model selection for medical diagnosis decision support systems. Decis. Support. Syst. 36(3):247–259, 2004.CrossRefGoogle Scholar
  17. 17.
    Miller, R. A., Medical diagnostic decision support systems – past, present, and future: a threaded bibliography and brief commentary. J. Am. Med. Inform. Assoc. 1(1):8–27, 1994.CrossRefGoogle Scholar
  18. 18.
    Sheng, O. R. L., Editorial: Decision support for healthcare in a new information age. Decis. Support. Syst. 30(2):101–103, 2004.CrossRefGoogle Scholar
  19. 19.
    Liao, S. H., Expert System methodologies and applications – a decade review from 1995 to 2004. Expert syst. Appl. 28(1):93–103, 2005.CrossRefGoogle Scholar
  20. 20.
    Übeyli, E. D., Implementing automated diagnostic systems for breast cancer detection. Expert Syst. Appl. 33(4):1054–1062, 2007.CrossRefGoogle Scholar
  21. 21.
    Benjamins, V. R., Davies, J., Baeza-Yates, R., Mika, P., Zaragoza, H., Gómez-Pérez, J. M., Contreras, J., Domingue, J., and Fensel, D., Near-term pros-pects for semantic technologies. IEEE Intell. Syst. 23(1):76–88, 2008.CrossRefGoogle Scholar
  22. 22.
    Vossen, G., Lytras, M., and Koudas, N., Editorial: Revisiting the (Machine) Semantic Web: The missing layers for the human Semantic Web. IEEE Trans. Knowl. Data Eng. 19(2):145–148, 2007.CrossRefGoogle Scholar
  23. 23.
    Fensel, D., and Munsen, M. A., The Semantic Web: A Brain for Humankind. IEEE Intell. Syst. 16(2):24–25, 2001.CrossRefGoogle Scholar
  24. 24.
    Lytras, M. D., and García, R., Semantic Web applications: a framework for industry and business exploitation - What is needed for the adoption of the Semantic Web from the market and industry. Int. J. Knowl. Learn. 4(1):93–108, 2008.CrossRefGoogle Scholar
  25. 25.
    Gurupur, B. P., and Tanik, M. M., A system for building clinical research applications using Semantic Web-based approach. J. Med. Syst. 2010. doi: 10.1007/s10916-010-9445-8
  26. 26.
    García-Sánchez, F., Fernández-Breis, J. T., Valencia-García, R., Gómez, J. M., and Martínez-Béjar, R., Combining Semantic Web Technologies with multi-agent systems for integrated access to biological resources. J. Biomed. Inform. 41(5):848–859, 2008.CrossRefGoogle Scholar
  27. 27.
    Jalali, V., and Borujerdi, R. M. M., A unified architecture for biomedical search engines based on semantic Web Technologies. J. Med. Syst. 35(2):237–249, 2011.CrossRefGoogle Scholar
  28. 28.
    Fensel, D., Ontologies: A silver bullet for knowledge management and electronic commerce. Springer, Berlin, 2002.Google Scholar
  29. 29.
    Fuentes-Lorenzo, D., Morato, J., and Gómez-Berbís, J. M., Knowledge management in biomedical libraries: A semantic web approach. Inf. Syst. Front. 11(4):471–480, 2009.CrossRefGoogle Scholar
  30. 30.
    Sicilia, J. J., Sicilia, M. A., Sánchez-Alonso, S., García-Barriocanal, E., and Pontikaki, M., Knowledge representation issues in ontology-based clinical knowledge management systems. Int. J. Technol. Manage. 47(1–3):191–206, 2009.CrossRefGoogle Scholar
  31. 31.
    Schulz, S., Stenzhorn, H., Boeker, M., and Smith, B., Strengths and limitations of formal ontologies in the biomedical domain. Electron. J. Commun. Inf. Innov. Heath. 3(1):31–45, 2009.Google Scholar
  32. 32.
    Stenzhorn, H., Schulz, S., Boeker, M., and Smith, B., Adapting clinical ontologies in real-world environments. J. Univ. Comput. Sci. 14(22):3767–3780, 2008.Google Scholar
  33. 33.
    Graber, M., Diagnostic errors in medicine: A case of neglect. Joint Comm. J. Qual. Patient Saf. 31(2):106–113, 2005.Google Scholar
  34. 34.
    Rector, A. L., Rogers, J. E., Zanstra, P. E., and Van der Haring, E., OpenGALEN: Open source medical terminology and tools. Proceedings of AMIA Symposium. 2003.Google Scholar
  35. 35.
    Baader, F., Horrocks, I., and Sattler, U., Description Logics as Ontology Languages for the Semantic Web. In Mechanizing Mathematical Reasoning. SpringerLink. 2003.Google Scholar
  36. 36.
    Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y., Pellet: A practical OWL-DL reasoner. Web. Semant. Sci. Serv. Agents World Wide. Web. 5(2);51–53, 2007.CrossRefGoogle Scholar
  37. 37.
    Gómez-Pérez, J. M., and Ruiz, C., Ontological Engineering and the Semantic Web. Stud. Comput. Intell. 311(2010):191–224, 2010.CrossRefGoogle Scholar
  38. 38.
    Kiryakov, A., Ognyanov, D., and Manov, D., OWLIM – a Pragmatic Semantic Repository for OWL. Int. Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2005). 182–192, 2005.Google Scholar
  39. 39.
    Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., and Velkov, R., OWLIM: A family of scalable semantic repositories. Semantic Web. 0:1–10, 2011.Google Scholar
  40. 40.
    Tsarkov, D., and Horrocks, I., FaCT++ Description Logic Reasoner: System Description. In Automated Reasoning Lect. Notes Comput. Sci. 4130(2006):292–297, 2006.MathSciNetGoogle Scholar
  41. 41.
    Motik, B., and Sattler, U., A comparison of reasoning techniques for querying large description logic ABoxes. Proceedings of the 13th international conference on logic for programming artificial intelligence and reasoning (LPAR 2006). 2006.Google Scholar
  42. 42.
    Haarslev, V., and Moller, R., Consistence testing: the RACE experience. In: Dyckhoff R (ed) Proceedings, automated reasoning with analytic tableaux and related methods. Lecture Notes on Artificial Intelligence. 1847:57–61, 2000.Google Scholar
  43. 43.
    Glimm, B., Horrocks, I., Motik, B., and Stoilos, G., HermiT: reasoning with large ontologies,, Computing Laboratory, Oxford University. 2009.
  44. 44.
    Mishra, R. B., and Kumar, S., Semantic web reasoners and languages. Artif. Intell. Rev. 35(4):339–368, 2010.CrossRefGoogle Scholar
  45. 45.
    García-Crespo, A., Rodriguez, A., Mencke, M., Gómez-Berbís, J. M., and Colomo-Palacios, R., ODDIN: Ontology-driven differential diagnosis based on logical inference and probabilistic refinements. Expert Syst. Appl. 37(3):2621–2628, 2010.CrossRefGoogle Scholar
  46. 46.
    Motik, B., Patel-schneider, P., and Parsia, B., OWL 2 Web Ontology Language, Structural specification and functional syntax. W3c Candidate recommendation. June 2009.Google Scholar
  47. 47.
    Rodriguez-Gonzalez, A., Fernandez, J., Jiménez, E., Mencke, M., Radzimski, M., Gómez, J. M., Alor-Hernandez, G., and Posada-Gómez, R., MedFinder: Using Semantic Web, Web 2.0 and Geolocation methods to develop a Decision Support System to locate doctors. 5th International Conference on Web Information Systems and Technologies (WEBIST). 2009.Google Scholar
  48. 48.
    Rudolph, S., Krötzsch, M., and Hitzler, P., All Elephants are Bigger than All Mice. In Proceedings of the 21st International Workshop on Description Logics (DL-08). CEUR Workshop Proceedings 2008.Google Scholar
  49. 49.
    Rodriguez, A., SeDeLo Raw Data. Avalaible online at: Last accessed: March 29, 2011
  50. 50.
    Park, S., and Lee, J. K., Rule identification using ontology while acquiring rules from Web pages. Int. J. Hum. Comput. Stud. 65(7):659–673, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alejandro Rodríguez-González
    • 1
  • Jose Emilio Labra-Gayo
    • 2
  • Ricardo Colomo-Palacios
    • 1
  • Miguel A. Mayer
    • 3
  • Juan Miguel Gómez-Berbís
    • 1
  • Angel García-Crespo
    • 1
  1. 1.Computer Science DepartmentUniversidad Carlos III de MadridMadridSpain
  2. 2.Computer Science DepartmentUniversidad de OviedoOviedoSpain
  3. 3.Research Programme on Biomedical Informatics (GRIB), IMIM-Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations