Journal of Medical Systems

, Volume 36, Issue 3, pp 1707–1717 | Cite as

Fuzzy Rule-Based Expert System for Assessment Severity of Asthma

  • Maryam Zolnoori
  • Mohammad Hossein Fazel Zarandi
  • Mostafa Moin
  • Shahram Teimorian


Prescription medicine for asthma at primary stages is based on asthma severity level. Despite major progress in discovering various variables affecting asthma severity levels, disregarding some of these variables by physicians, variables’ inherent uncertainty, and assigning patients to limited categories of decision making are the major causes of underestimating asthma severity, and as a result low quality of life in asthmatic patients. In this paper, we provide a solution of intelligence fuzzy system for this problem. Inputs of this system are organized in five modules of respiratory symptoms, bronchial obstruction, asthma instability, quality of life, and asthma severity. Output of this system is degree of asthma severity in score (0–10). Evaluating performance of this system by 28 asthmatic patients reinforces that the system’s results not only correspond with evaluations of physicians, but represent the slight differences of asthmatic patients placed in specific category introduced by guidelines.


Asthma Severity Assessment Fuzzy Expert system 



I would like to appreciate all who gave me the possibility to complete this paper. I want to thank the physicians and staff of Immunology, Asthma & Allergy Research center for their collaboration in providing necessary knowledge. I thank Dr Heydarnejad and Dr. Fazlollahi for their guidance, Mehdi Taherian for contribution in knowledge representation I appreciate Zahra Zolnoor, Ali Zolnoor, and Mohammad Reza Zolnoor for providing general information. Finally I thank Neda Kharghani for reviewing this paper and providing useful comments.


  1. 1.
    Hanania, A. N., Revisiting asthma control: How should it best be defined? Pulm. Pharmacol. Ther. 20(5):483–492, 2007.CrossRefGoogle Scholar
  2. 2.
    Asthma and Environmental Triggers. National Institute of Environmental Health Science (NIEHS) (online). WWW URL: http//
  3. 3.
    Bavgek, S., Mungan, D., Türktaş, H., Mısırlıgil, Z., and Gemicioğlu, B., A cost-of-illness study estimating the direct cost per asthma exacerbation in Turkey, Respiratory Medicine, 2010.Google Scholar
  4. 4.
    Yan, D. C., Ou, L. S., Tsai, T. L., Wu, W. F., and Huang, J. L., Prevalence and severity of symptoms of asthma, rhinitis, and eczema in 13- to 14-year-old children in Taipei, Taiwan. Ann. Allergy Asthma Immunol. 95(6):579–585, 2005.CrossRefGoogle Scholar
  5. 5.
    Wolfenden, L. L., Diette, G. B., Krishnan, J. A., Skinner, E. A., Steinwachs, D. M., and Wu, A. W., Lower physician estimate of underlying asthma severity leads to undertreatment. Arch. Intern. Med. 163:231–236, 2003.CrossRefGoogle Scholar
  6. 6.
    Rodrigo, G. J., Plaza, V., Neffen, H., Levy, G., and Perpina, M., Relationship between the characteristic of hospitalized acute asthma patients and the severity of their asthma. A case control study. J. Allergol. Immunopathol. 37(5):225–229, 2009.CrossRefGoogle Scholar
  7. 7.
    Gautier, V., Redier, H., Pujol, J. L., Bousquet, J., Proundhon, H., Michel, C., Daures, J. P., Michel, F. B., and Godard, Ph, Comparison of an expert system with other clinical scores for the evaluation of the severity of asthma. Eur. Respir. J. 9:58–54, 1996.CrossRefGoogle Scholar
  8. 8.
    Global Initiative for Asthma. Global Strategy for Management and Prevention. National Heart, Lung, and Blood Institute. National Institutes of Health. 2009 NIH publication (online). WWW URL. Http:\\ Accessed December 2009.
  9. 9.
    Üncü, Ü., Evaluation of pulmonary function tests by using fuzzy logic theory. J. Med. Syst. 34(2):223–417, 2009.Google Scholar
  10. 10.
    Aas, K., Heterogeneity of bronchial asthma. Allergy. 36:3–14, 1981.CrossRefGoogle Scholar
  11. 11.
    Hargreave, F. E., Dolovich, J., and Newhouse, M. T., The assessment and treatment of asthma: A conference report. J. Allergy Clin. Immunol. 85:1098–1111, 1990.CrossRefGoogle Scholar
  12. 12.
    Brooks, S. M., Bernstein, L., Raghuprasad, P. K., Maccia, C. A., and Mieczkowski, L., Assessment of airway hyperresponsiveness in chronic stable asthma. J. Allergy Clin. Immunol. 85:17–26, 1990.CrossRefGoogle Scholar
  13. 13.
    Global Initiative for Asthma. Global Strategy for Management and Prevention 2006 Revision. National Institutes of Health, National Heart,Lung, and Blood Institute (online). WWW URL: http// Accessed august 2006.
  14. 14.
    Boulet, L. P., Becker, A., Berube, D., et al., Canadian Asthma Consensus Report, 1999. Canadian Asthma Consensus Group. CMAJ. 161(Suppl. 11):S1–S61, 1999.Google Scholar
  15. 15.
    Combescure, C., Chanez, P., Saint-Pierre, P., Daure’s, J.-P., Proudhon, H., and Godard, P., Assessment of variations in control of asthma over time. Eur. Respir. J. 22:298–304, 2003.CrossRefGoogle Scholar
  16. 16.
    Shout, J. W., Visness, M. C., Enright, P., Lamm, C., Shapiro, G., Gan, N. V., Adams, G. K., and Mitchell, H. E., Classification of asthma severity in children the contribution of pulmonary function testing. Arch. Pediatr. Adolesc. Med. 160:844–850, 2006.CrossRefGoogle Scholar
  17. 17.
    Yen, C. Y., Rule selection in fuzzy expert system. Expert Syst. Appl. 16:79–84, 1999.CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Global Initiative for Asthma, Global Strategy for Management and Prevention, National Institutes of Health, National Heart, Lung, and Blood Institute, 2008 NIH publication.Google Scholar
  20. 20.
    Kornelija, K., Slavica, D., Dorijan, T. D., and Miljenko, R., Correlation between asthma severity and serum IgE in asthmatic children sensitized to Dermatophagoides pteronyssinus. Arch. Med. Res. 38(no 1):99–105, 2007.CrossRefGoogle Scholar
  21. 21.
    Mamdani, E. H., and Assilian, S., An expriment in linguistic synthesis with a fuzzy logic controller. Int. Man Mach. Stud. 7:1–13, 1975.MATHCrossRefGoogle Scholar
  22. 22.
    Emami, R. M., Turksen, I. B., and Goldenberg, A. A., A unified parameterized formulation of reasoning in fuzzy modeling and control. Fuzzy Sets Syst. 108:59–81, 1999.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Morgan, W. J., Crain, E. F., Gruchalla, R. S., et al., Results of a home-based environmental intervention among urban children with asthma. N. Engl. J. Med. 351:1068–1080, 2004.CrossRefGoogle Scholar
  24. 24.
    Rubinfeld, A. R., and Pain, M. C. F., Relationship between bronchial reactivity, airway caliber and severity of asthma. Am. Rev. Respir. Dis. 115:381–387, 1977.Google Scholar
  25. 25.
    Stout, J. W., Visness, C. M., Enright, P., Lamm, C., Shapiro, G., Gan, V. N., Adams, G. K., and Mitchell, H. E., Classification of asthma severity in children, the contribution of pulmonary function testing. Arch. Pediatric. Adolesc. Med. 160(8):844–850, 2006.CrossRefGoogle Scholar
  26. 26.
    Enright, P. L., lebowitz, M. D., and Cockroft, D. W., Physiologic measures: Pulmonary function tests: Asthma outcome. Am. J. Respir. Crit. Care Med. 149:S9–S18, 1994.Google Scholar
  27. 27.
    Bacharier, B. L., Strunk, C. R., Mauger, D., White, D., Lemanske, F. R., and Sorkness, A. C., Classifying asthma severity in children mismatch between symptoms, medication use, and lung function. Am. J. Respir. Crit. Care Med. 170:426–432, 2004.CrossRefGoogle Scholar
  28. 28.
    Lil, J. T., Schatz, M., Sorkness, C. A., Murray, J. J., Marcus, P., Nathan, R. A., Pendergraft, T. B., Kosinski, M., and Stanford, R. H., Specialist asthma care results in superior assessment of asthma control. J. Allergy Clin. Immunol. 113(2):S253, 2004.Google Scholar
  29. 29.
    Eigen, H., Pulmonary function testing. In: Murphy, S., and Kelly, H. W. (Eds.), Pediatric Asthma. Marcel Eekker, Inc, New York, pp. 131–150, 1999.Google Scholar
  30. 30.
    Wright, A., Holberg, C., Morgan, W., Taussig, L., Halonen, M., and Martinez, F., Recurrent cough in childhood and its relation to asthma. Am. J. Respir. Crit. Care Med. 153:1259–1265, 1996.Google Scholar
  31. 31.
    Devulapalli, C. S., Carlsen, K. C., Håland, G., Munthe-Kaas, M. C., Pettersen, M., Mowinckel, P., and Carlsen, K. H., Severity of obstructive airways disease by age 2 years predicts asthma at 10 years of age. Thorax. 63(1):8–13, 2008.CrossRefGoogle Scholar
  32. 32.
    Everhar R. S., and Fiese, B., Asthma severity and child quality of life in pediatric asthma: A systematic review. Patient Educ Couns. 75(2):162–168, 2009.Google Scholar
  33. 33.
    Redier, H., Daures, J.-P., Michel, C., Proudhon, H., Vervloet, D., Charpin, D., Marsac, J., Dusser, D., Brambilla, C., Wallaert, B., Kopferschmitt, M.-C., Pauli, G., Taytard, A., Cogis, O., Cogis, O., Michel, F.-B., and Godard, P., Assessment of the severity of asthma by an expert system: Description and evaluation. Am. J. Respir. Crit. Care Med. 151(21):345–352, 1995.Google Scholar
  34. 34.
    Moin, M., Principle of asthma. In: Moine, M., et al. (Eds.), Asthma; Basic clinical science, 1st edition. University Publication Center, Tehran, 2003.Google Scholar
  35. 35.
    Pedrycz, W., Why triangular membership functions? Fuzzy Sets Syst. 64(1):21–30, 1994.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Phuong, H. N., and Kreinovich, V., Fuzzy logic and its applications in medicine. Int. J. Med. Inform. 62:165–173, 2001.CrossRefGoogle Scholar
  37. 37.
    Sugeno, M., and Yasukawa, T., A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1(1):7–30, 1993.CrossRefGoogle Scholar
  38. 38.
    Schwartz, G., Gupta, R. S., Springston, E., Zhang, X., and Grammer, L. C., The association between crime and adult asthma severity. J. Allergy Clin. Immunol. 125(2):AB32, 2010.Google Scholar
  39. 39.
    Everhart, R. S., Barbara, H. F., Asthma severity and child quality of life in pediatric asthma: A systematic review. Patient Educ Couns. 75(2):162–168, 2009.Google Scholar
  40. 40.
    Lurie, A., Marsala, C., Hartley, S., Bouchon-Meunier, B., and Dusser, D., Patients’ perception of asthma severity. Respir. Med. 101:2145–2152, 2007.CrossRefGoogle Scholar
  41. 41.
    Robin, S., Everhart, R., and Fiese, B., Asthma severity and child quality of life in pediatric asthma: A systematic review, Patient Education and Counseling, PEC-3232, 2008.Google Scholar
  42. 42.
    Joseph, C., Baptist, A., Stringer, S., Havstad, S., Ownby, D., Johnson, C., Williams, L., and Peterson, E., Identifying students with self-report of asthma and respiratory symptoms in an urban, High school setting. J. Urban Health. 84(1):60–69, 2007.CrossRefGoogle Scholar
  43. 43.
    Bateman, D., Hurd, S., Barnes, J., Bousquet, J., Drazen, J., itzGerald, F., Gibson, M., Gibson, F., Ohta, K., O’Byrne, P., Pedersen, S., Pizzichini, E., Sullivan, S., and Zar, H., Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J. 31:143–178, 2008.CrossRefGoogle Scholar
  44. 44.
    Pedersen, S., Pauwels, R. A., Tan, W. C., Chen, Y. Z., Lamm, C. J., and O’Byrne, P. M., effectiveness of early intervention with budesonide in mild persistent asthma. J. Allergy Clin. Immunol. 121(5):1167–1174, 2008.CrossRefGoogle Scholar
  45. 45.
    Kelly, L., Ronmark, E., Roper, J., James, H., Lundback, B., and Platts-Mills, T., IgE And IgG antibodies to cat allergens in relation to asthma severity among 963 teenagers living in Northern Sweden. J. Allergy Clin. Immunol. 125(2):AB188, 2010.Google Scholar
  46. 46.
    Brightling, C. E., Burney, P., et al., Uniform definition of asthma severity, control, and exacerbations: Document presented for the World Health Organization Consultation on Severe Asthma. J. Allergy Clin. Immunol. 126(5):926–938, 2010.CrossRefGoogle Scholar
  47. 47.
    Omachi, T. A., Poor outcomes and asthma hospitalisations: How important is asthma severity and how do we measure it? Allergol Immunopathol (Madr). 37(5):223–224, 2009.Google Scholar
  48. 48.
    Madhok, N., Kipperman, S., Tom, C., Sin, S., and Rastogi, D., “Parental perception and knowledge of asthma severity and management of athmatic children in the bronx”. J. Allergy Clin. Immunol. 123(2):S161, 2009.Google Scholar
  49. 49.
    Janssens, T., verleden, G., Peuter, S. D., Diest, I. V., and Bergh, O. V. D., Inaccurate perception of asthma symptoms: A cognitive–affective framework and implications for asthma treatment. Clin Psychol Rev. 29(4):317–327, 2009.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maryam Zolnoori
    • 1
    • 2
  • Mohammad Hossein Fazel Zarandi
    • 3
  • Mostafa Moin
    • 4
  • Shahram Teimorian
    • 4
  1. 1.Department of Information Technology ManagementTarbiat Modares UniversityTehranIran
  2. 2.Mathematic and informatics group, Academic Center for Education, Culture and Research (ACECR)Tarbiat Modares UniversityTehranIran
  3. 3.Department of Industrial EngineeringAmirkabir University of TechnologyTehranIran
  4. 4.Immunology, Asthma and Allergy Research InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations