Journal of Medical Systems

, Volume 36, Issue 3, pp 1249–1258 | Cite as

Associating Clinical Archetypes Through UMLS Metathesaurus Term Clusters

  • Leonardo Lezcano
  • Salvador Sánchez-Alonso
  • Miguel-Angel Sicilia
Original Paper

Abstract

Clinical archetypes are modular definitions of clinical data, expressed using standard or open constraint-based data models as the CEN EN13606 and openEHR. There is an increasing archetype specification activity that raises the need for techniques to associate archetypes to support better management and user navigation in archetype repositories. This paper reports on a computational technique to generate tentative archetype associations by mapping them through term clusters obtained from the UMLS Metathesaurus. The terms are used to build a bipartite graph model and graph connectivity measures can be used for deriving associations.

Keywords

Clinical archetypes UMLS Graphs 

Notes

Acknowledgements

This work has been supported by the project “Historia Clínica Inteligente para la seguridad del Paciente/Intelligent Clinical Records for Patient Safety” (CISEP), code FIT-350301-2007-18, funded by the Spanish Ministry of Science and Technology.

References

  1. 1.
    Bertaud, V., Lasbleiz, J., Mougin, F., Burgun, A., and Duvauferrier, R., A unified representation of findings in clinical radiology using the UMLS and DICOM. Int. J. Med. Inform. 77(9):621–629, 2008.CrossRefGoogle Scholar
  2. 2.
    Suebnukarn, S., Haddawy, P., and Rhienmora, P., A collaborative medical case authoring environment based on the UMLS. Journal of Biomedical Informatics 41(2):318–326, 2008.CrossRefGoogle Scholar
  3. 3.
    Marquet, G., Mosser, J., and Burgun, A., A method exploiting syntactic patterns and the UMLS semantics for aligning biomedical ontologies: The case of OBO disease ontologies. Int. J. Med. Inform., 76(3):S353–S361, 2007.CrossRefGoogle Scholar
  4. 4.
    Woods, J. W., Sneiderman, C. A., Hameed, K., Ackerman, M. J., and Hatton, C., Using UMLS metathesaurus concepts to describe medical images: Dermatology vocabulary. Comput. Biol. Med. 36(1):89–100, 2006.CrossRefGoogle Scholar
  5. 5.
    Brennan, P. F., and Aronson, A. R., Towards linking patients and clinical information: Detecting UMLS concepts in e-mail. Journal of Biomedical Informatics 36(4–5):334–341, 2003.CrossRefGoogle Scholar
  6. 6.
    Qamar, R., and Rector, A., Semantic mapping of clinical model data to biomedical terminologies to facilitate data interoperability. Presented at Healthcare Computing 2007 Conference, Harrogate, UK, 2007. Available: http://www.cs.man.ac.uk/~qamarr/papers/HealthcareComputing2007_Qamar.pdf. Accessed 9 August 2010.
  7. 7.
    Bisbal, J., and Berry, D., Archetype alignment—a two-level driven semantic matching approach to interoperability in the clinical domain. Presented at International Conference on Health Informatics (HEALTHINF 2009), Porto, Portugal, 2009.Google Scholar
  8. 8.
    Gresock, J. A., Finding combinatorial connections between concepts in the biomedical literature. M.S. thesis, Department of Computer Science, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S., 2007.Google Scholar
  9. 9.
    Stroetmann, V. N., Kalra, D., Lewalle, P., Rodrigues, J. M., Stroetmann, K. A., Surjan, G., Ustun, B., Virtanen, M., and Zanstra, P. E., Semantic interoperability for better health and safer healthcare. Project report, European Commission. Office for Official Publications of the European Communities: Luxembourg, 2009.Google Scholar
  10. 10.
    Schloeffel, P., Beale, T., Hayworth, G., Heard, S., and Leslie, H., The relationship between CEN 13606, HL7, and openEHR. In: Proceedings of HIC 2006 Bridging the Digital Divide: Clinician, Consumer and Computer. Seattle, Washington, USA, 2006.Google Scholar
  11. 11.
    Michelsen, L., Pedersen, S. S., Tilma, H. B., and Andersen, S. K., Comparing different approaches to two-level modelling of electronic health records. Stud. Health Technol. Inform. 116:113–118, 2005.Google Scholar
  12. 12.
    Beale, T., Heard, S., Kalra, D., and Lloyd, D., The openEHR EHR information model, The openEHR Reference Model, The openEHR Foundation, rev. 5.1.0, 2007.Google Scholar
  13. 13.
    Beale, T., Archetypes, constraint-based domain models for future-proof information systems. In: Proceedings of the OOPSLA 2002 Conference. pp. 16–32. Boston, Seattle, Washington, USA, 2002.Google Scholar
  14. 14.
    Chen, R., and Klein, G., The openEHR Java reference implementation project. Stud. Health Technol. Inform., 129(pt. 1):58–62, 2007.Google Scholar
  15. 15.
    Bodenreider, O., The Unified Medical Language System (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 32(database issue D267–D270), 2004.CrossRefGoogle Scholar
  16. 16.
    Lindberg, D. A., Humphreys, B. L., and McCray, A. T., The unified medical language system. Methods Inf. Med. 32(4):281–291, 1993.Google Scholar
  17. 17.
    Bangalore, A., Thorn, K. E., Tilley, C., and Peters, L., The UMLS knowledge source server: An object model for delivering UMLS data. In: Proceedings of the AMIA 2003 Symposium. pp. 51–55, 2003.Google Scholar
  18. 18.
    McCray, A. T., Srinivasan, S., and Browne, A. C., Lexical methods for managing variation in biomedical terminologies. In: Proceedings of the Annual Symposium on Computer Applications in Medical Care. pp. 235–239, 1994.Google Scholar
  19. 19.
    Browne, A. C., Divita, G., Lu, C., McCreedy, L., and Nace, D., Lexical systems: A report to the Board of Scientific Counselors, Lister Hill National Center for Biomedical Communications, National Library of Medicine. Tech. Rep. LHNCBC-TR-2003-003, 2003.Google Scholar
  20. 20.
    Browne, A. C., McCray, A. T., and Srinivasan, S., The SPECIALIST LEXICON, Lister Hill National Center for Biomedical Communications, National Library of Medicine: Bethesda, MD, 2000.Google Scholar
  21. 21.
    de Nooy, W., Mrvar, A., and Batagelj, V., Exploratory social network analysis with Pajek. New York: Cambridge University Press, 2005.Google Scholar
  22. 22.
    O’Madadhain, J., Fisher, D., White, S., and Boey, Y. B., The JUNG (Java Universal Network/Graph) Framework, University of California, Irvine, CA. Tech Rep. UCI-ICS 03-17, 2003.Google Scholar
  23. 23.
    Fruchterman, T., and Reingold, E., Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11):1129–1164, 1991.CrossRefGoogle Scholar
  24. 24.
    Batagelj, V., and Mrvar, A., Pajek: Analysis and visualization of large networks. In: Graph Drawing Software. pp. 77–103. Springer, 2003.Google Scholar
  25. 25.
    Lamping, J., and Rao, R., The hyperbolic browser: A focus+ context technique for visualizing large hierarchies. J. Vis. Lang. Comput. 6(4), 1995.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Leonardo Lezcano
    • 1
  • Salvador Sánchez-Alonso
    • 1
  • Miguel-Angel Sicilia
    • 1
  1. 1.Information Engineering Research Unit, Computer Science DepartmentUniversity of AlcaláAlcaláSpain

Personalised recommendations