Journal of Medical Systems

, Volume 36, Issue 3, pp 1065–1094

A Comprehensive Survey of Wireless Body Area Networks

On PHY, MAC, and Network Layers Solutions
  • Sana Ullah
  • Henry Higgins
  • Bart Braem
  • Benoit Latre
  • Chris Blondia
  • Ingrid Moerman
  • Shahnaz Saleem
  • Ziaur Rahman
  • Kyung Sup Kwak
Original Paper

Abstract

Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted.

Keywords

Implant communication Physical WBAN MAC Networking Routing Survey 

Acronyms and abbreviations

ALTR

Adaptive Least Temperature Routing

AES

Advanced Encryption Standard

CSMA/CA

Carrier Sense Multiple Access/Collision Avoidance

CAP

Contention Access Period

CFP

Contention Free Period

CCA

Clear Channel Assessment

C1/C2

Control Channels

CE

Consumer Electronics

CTR

Counter

CBC

Cipher-block Chaining

CCM

Counter with CBC

CRC

Cyclic Redundancy Check

CAB

Coefficient of Absorption and Bioeffects

CICADA

Cascading Information Retrieval by Controlling Access with Distributed slot Assignment protocol

CBR

Constant Bit Rate

DTDMA

Reservation-based Dynamic TDMA Protocol

ERP

Effective Radiated Power

ECG

Electrocardiogram

FCC

Federal Communication Commission

FDTD

Finite Difference Time Domain

GDP

Gross Domestic Product

GTS

Guaranteed Time Slot

H-MAC

Heart-beat Driven MAC Protocol

HEC

Hydroxyl Ethyl Cellulose

H-V

Horizontal-Vertical Polarisation

H-H

Horizontal-Horizontal Polarisation

IEEE

Institute of Electrical and Electronics Engineers

ISM

Industrial, Scientific, and Medical band

LPL

Low Power Listening

LBT

Listen Before Talking

LOS

Line Of Sight

LTR

Least Temperature Routing

LTRT

Least Total Route Temperature

MAC

Medium Access Control

MICS

Medical Implant Communications Service

MAC (bold letters)

Message Authentication Code

MN

Master Node

MS

Monitoring Station

NIST

National Institute of Standards and Technology

NLOS

Non-line Of Sight

NS2

Network Simulator 2

PHY

Physical Layer

PB-TDMA

Preamble-based TDMA Protocol

QoS

Quality of Service

RF

Radio Frequency

REMCOM

a software company (http://www.remcom.com/)

SAR

Specific Absorption Rate

TDMA

Time Division Multiple Access

TSRP

Time Slot Reserved for Periodic Traffic

TSRB

Time Slot Reserved for Bursty Traffic

TARA

Thermal Aware Routing Algorithm

TIP

Temperature Increase Potential

UWB

Ultra-wide Band

V-V

Vertical-Vertical Polarisation

V-H

Vertical-Horizontal Polarisation

WBAN

Wireless Body Area Network

WMTS

Wireless Medical Telemetry Services

WASP

Wireless Autonomous Spanning Tree Protocol

WSN

Wireless Sensor Network

XFDTD

a 3d Electromagnetic simulation software package

XOR

Exclusive OR

References

  1. 1.
    Campbell, P., Current population reports (population projections: States, 1995–2025), pp. 25–1131. Census Bureau, 2005.Google Scholar
  2. 2.
    Barroso, A., Benson, J., et al., The DSYS25 sensor platform. In: Proceedings of the ACM Sensys 2004, Baltimore, 2004.Google Scholar
  3. 3.
    Jovanov, E., Milenkovic, A., Otto, C., and de Groen, P., A Wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. JNER 2(6):16–23, 2005.Google Scholar
  4. 4.
    IEEE 802.15.6, Technical requirements document, 2008.Google Scholar
  5. 5.
    Yang, G. Z., Body sensor networks (chapter: Wirelss communication). Springer, 2006.Google Scholar
  6. 6.
    Finkenzeller, K., RFID handbook, 2nd Edn. Wiley International, 2003.Google Scholar
  7. 7.
    Kraus, J. D., Antennas, 2nd edn. McGraw Hill, 1988.Google Scholar
  8. 8.
    Bancroft, R., Microstrip and printed antenna design, 2nd Edn. SciTech, 2008.Google Scholar
  9. 9.
    Cotton, S. L., Scanlon, W. G., Channel characterization for single- and multiple-antenna wearable systems used for indoor body-to-body communications. IEEE Trans. Antennas Propag. 2(4):980–990, 2009.CrossRefGoogle Scholar
  10. 10.
    Conway, G., Cotton, S., and Scanlon, W., An antennas and propagation approach to improving physical layer performance in wireless body area networks. IEEE J. Sel. Areas Commun. 27(1):27–36, 2009.CrossRefGoogle Scholar
  11. 11.
    Wojclk, J., Tissue recipe calibration requirements, SSI/DRB-TP-D01-003, Spectrum Sciences Institute RF Dosemetry Research Board, 51 Spectrum Way, Nepean, Ontario, K2R 1E6 Canada, 1998.Google Scholar
  12. 12.
    Yang, G.-Z., Body Sensor Networks, pp. 125–127. Springer: London, 2006.CrossRefGoogle Scholar
  13. 13.
    Yang, G.-Z., Body Sensor Networks, pp. 128–136. Springer: London, 2006.CrossRefGoogle Scholar
  14. 14.
    Johansson, A. J., Wave-propagation from medical implants-inuence of body shape on radiation pattern, in 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Proceedings of the Second Joint EMBS/BMES Conference, Vol. 2, pp. 1409–1410, 2002.Google Scholar
  15. 15.
    Ullah, S., Higgins, H., Shen, B., and Kwak, K. S., On the implant communication and MAC protocols for WBAN, International Journal of Communication Systems 982–999, 2010. doi:10.1002/dac.1100.
  16. 16.
    Sayrafian-Pour, K., Wen-Bin Yang, Hagedorn, J., Terrill, J., and Yazdandoost, K. Y., A statistical path loss model for medical implant communication channels, Personal, In the Proc. of 2009 IEEE 20th International Symposium onIndoor and Mobile Radio Communications , pp. 2995–2999, 2009.Google Scholar
  17. 17.
    Hall, P. S., Antennas Challenges for Body Centric Communications, International Workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, pp. 41–44, 2007.Google Scholar
  18. 18.
    Kamarudin, M. R., Nechayev, Y. I., and Hall, P. S., Performance of antennas in the on body environment, IEEE AP-S International Symposium, Washington, USA, pp. 475–478, 2005.Google Scholar
  19. 19.
    Kamarudin, M. R., and Hall, P. S., Diversity measurements of antennas in the on-body environment, In the Proc. of European Conference on Antennas and Propagation (EuCAP06), France, 2006.Google Scholar
  20. 20.
    Hall, P. S., and Hao, Y., Antennas and propagation for body centric communications, In the Proc. of First European Conference on Antennas and Propagation (EuCAP 2006), pp. 1–7, 2006.Google Scholar
  21. 21.
    Reusens, E., Joseph, W., Vermeeren, G., Martens, L., Latre, B., Moerman, I., Braem, B., and Blondia, C., Path loss models for wireless communication channel along arm and torso: measurements and simulations, In the Proc. of IEEE International Symposium on Antennas and Propagation Society, pp. 345–348, 2007.Google Scholar
  22. 22.
    Salonen, P., and Rahmat, Y., Textile Antennas: Effects of Antenna Bending on Input Matching and Impedance Bandwidth, In the Proc. of European Conference on Antennas and Propagation (EuCAP06). France, 2006.Google Scholar
  23. 23.
    Ullah, S., Bin, S., Islam, S. M. R., Pervez. K., Shahnaz. S., and Kwak, K. S., A Study of MAC Protocols for WBANs. Sensors 10(1):128–145, 2010.CrossRefGoogle Scholar
  24. 24.
    Huaming, L., and Jindong, T., An Ultra-low-power Medium Access Control Protocol for Body Sensor Network, in the Proc. of 27th Annual International Conference of the Engineering in Medicine and Biology Society, pp. 2451–2454, 2005.Google Scholar
  25. 25.
    Zhen, B., Li, H. B., and Kohno, R., IEEE body area networks and medical implant communications, in the Proc. of the ICST 3rd International Conference on Body Area Networks. Tempe, Ariz, USA, 2008.Google Scholar
  26. 26.
    Ullah, S., Kwak, D., Lee, C., Lee, H., and Kwak, K. S., Numerical Analysis of CSMA/CA for Pattern-Based WBAN System, in the Proc. of 2nd International Conference on Biomedical Engineering and Informatics, (BMEI 2009) pp. 1–3, 2009.Google Scholar
  27. 27.
    Polastre, J., Hill, J., and Culler, D., Versatile low power media access for wireless sensor networks. In Proc. of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 95–107. New York, USA, 2004.Google Scholar
  28. 28.
    Ye, W., and Estrin, H. J., An energy-efficient MAC protocol for wireless sensor networks. In Proc. of Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 1567–1576. Miami, USA, 2002.Google Scholar
  29. 29.
    Ullah, S., Islam, S. M. R., Nessa, A., Zhong, Y., and Kwak, K. S., Performance analysis of preamble based TDMA protocol for wireless body area network, Journal of Communication Software and Systems 4(3):222–226, 2008.Google Scholar
  30. 30.
    IEEE Std.802.15.4, Wireless medium access control (MAC) and physical layer (PHY) specifications for low data rate wireless personal area networks (WPAN). IEEE: Piscataway, USA, 2006.Google Scholar
  31. 31.
    Timmons, N. F., and Scanlon, W. G., Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking. in the Proc. of First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (IEEE SECON 2004) pp. 16–24, 2004.Google Scholar
  32. 32.
    Changle, L., Huan-Bang, L., and Kohno, R., Performance evaluation of IEEE 802.15.4 for Wireless Body Area Network (WBAN). in the Proc. of IEEE International Conference on Communications Workshops (ICC Workshops 2009) pp. 1–5, 2009.Google Scholar
  33. 33.
    IEEE 802.11e Std Amendment to Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Medium access control quality of services enhancements, 2005.Google Scholar
  34. 34.
    Cavalcanti, D., Schmitt, R., and Soomro, A., Performance Analysis of 802.15.4 and 802.11e for body sensor network applications. in the Proc. of 4th International Workshop on Wearable and Implantable Body Sensor Networks, 2007.Google Scholar
  35. 35.
    Chen, C., and Pomalaza-Raez, C., Monitoring human movements at home using wearable wireless sensors. in the Proc. of ISMICT 2009. Montreal, 2009.Google Scholar
  36. 36.
    Su, H., and Zhang, X., Battery-dynamics driven tdma mac protocols for wireless body-area monitoring networks in healthcare applications. IEEE J. Sel. Areas Commun. 27(4):424–434, 2009.CrossRefGoogle Scholar
  37. 37.
    Chiasserini, C. F., and Rao, R. R., A model for battery pulsed discharge with recovery effect. in the Proc. of IEEE Wireless Communications and Networking Conference (WCNC 1999), Vol. 2, pp. 636–639, 1999.Google Scholar
  38. 38.
    Marinkovi, S. J., Popovici, E. M., Spagnol, C., Faul, S., and Marnane, W. P., Energy-efficient low duty cycle MAC protocol for wireless body area networks. IEEE Trans. Inf. Technol. Biomed. 13(6):915–925, 2009.CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., and Dolmans, G., A new priority-guaranteed MAC protocol for emerging body area networks. in the Proc. of Fifth International Conference on Wireless and Mobile Communications (ICWMC 2009), pp.140–145, 2009.Google Scholar
  40. 40.
    Li, H. M., and Tan, J. D., Heartbeat driven MAC for body sensor networks. In Proc. of the 1st ACM SIGMOBILE international workshop on systems and networking support for healthcare and assisted living environments, pp. 25–30. Puerto Rico, 2007.Google Scholar
  41. 41.
    Li, C., Li, H. B., and Kohno, R., Reservation-based dynamic TDMA protocol for medical body area networks. IEICE Trans. Commun. 2009 92(2):387–395, 2009.CrossRefGoogle Scholar
  42. 42.
    Fang, G., and Dutkiewicz, E., BodyMAC: Energy efficient TDMA-based MAC protocol for wireless body area networks. in the Proc. of 9th International Symposium on Communications and Information Technology (ISCIT 2009), pp. 1455–1459, 2009.Google Scholar
  43. 43.
    Kwak, K. S., Ullah, S., Kwak, D. H., Lee, C. H., and Lee., H. S., A power-efficient MAC protocol for WBAN. Journal of Korean Institute of Intelligent Transport Systems 8(6):131–140, 2009.Google Scholar
  44. 44.
    El-Hoiydi, A., and Decotignie, J. D., WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks. in the Proc. of the First International Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS 2004), LNCS 3121, pp. 18.31, 2004.Google Scholar
  45. 45.
    Saleem, S., Ullah, S., and Yoo, H. S., On the security issues in wireless body area networks. Journal of Digital Content Technology and its Applications (JDCTA) 3(3):178–184, 2009.Google Scholar
  46. 46.
    Ng, H. S., Sim, M. L., and Tan, C. M., Security issues of wireless sensor networks in healthcare applications. BT Technol. J. 24(2):138–144, 2006.CrossRefGoogle Scholar
  47. 47.
    Law, Y. W., Doumen, J., and Hartel, P., Survey and benchmark of block ciphers for wireless sensor networks. ACM Transactions on Sensor Networks (TOSN) 2(1):65–93, 2006.CrossRefGoogle Scholar
  48. 48.
    Riu, P. J., and Foster, K. R., Heating of tissue by near-field exposure to a dipole: a model analysis. IEEE Trans. Biomed. Eng. 46(8):911–917, 1999.CrossRefGoogle Scholar
  49. 49.
    Akkaya, K., and Younis, M., A survey on routing protocols for wireless sensor networks. Ad Hoc Networks 3(3):325–349, 2005.CrossRefGoogle Scholar
  50. 50.
    Cypher, D., Chevrollier, N., Montavont, N., and Golmie, N., Prevailing over wires in healthcare environments: benefits and challenges. IEEE Commun. Mag. 44(4):56–63, 2006.CrossRefGoogle Scholar
  51. 51.
    Zasowski, T., Althaus, F., Stager, M., Wittneben, A., and Troster, G., UWB for noninvasive wireless body area networks: channel measurements and results, in the Proc. of 2003 IEEE Conference on Ultra Wideband Systems and Technologies, pp. 285–289, 2003.Google Scholar
  52. 52.
    Latre, B., Vermeeren, G., Moerman, I., Martens, L., and Demeester, P., Networking and propagation issues in body area networks. in the Proc. of 11th Symposium on Communications and Vehicular Technology. Belgium, 2004.Google Scholar
  53. 53.
    Shankar, V., Natarajan, A., Gupta, S. K. S., and Schwiebert, L., Energy-efficient protocols for wireless communication in biosensornetworks. in the Proc. of 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2001), Vol. 1, pp. 114–118, 2001.Google Scholar
  54. 54.
    Braem, B., Latre, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., Martens, L., and Demeester, P., The need for cooperation and relaying in short-range high path loss sensor networks. In the Proc. of First International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), pp. 566–571. Spain, 2007.Google Scholar
  55. 55.
    Reusens, E., Joseph, W., Vermeeren, G., Kurup, D., and Martens, L., Real human body measurements, model, and simulations of 2.45 GHz wireless body area network communication channel. In the Proc. of International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2008), pp. 149–152. China, 2008.Google Scholar
  56. 56.
    Fort, A., Ryckaert, J., Desset, C., De Doncker, P., Wambacq, P., and Van Biesen, L., Ultra-wideband channel model for communication around the human body. IEEE J. Sel. Areas Commun. 24(4):927–933, 2006.CrossRefGoogle Scholar
  57. 57.
    Natarajan, A., Motani, M., de Silva, B., Yap, K., and Chua, K. C., Investigating network architectures for body sensor networks. in the Proc. of 1st ACM SIGMOBILE international workshop on Systems and networking support for healthcare and assisted living environments. New York, NY, USA, 2007.Google Scholar
  58. 58.
    Arumugam, D. D., Gautham, A., Narayanaswamy, G., and Engels, D. W., Impacts of RF radiation on the human body in a passive wireless healthcare environment. in the Proc. of Second International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2008), pp. 181–182, 2008.Google Scholar
  59. 59.
    Ren, H., and Meng, M. Q. H., Rate control to reduce bioeffects in wireless biomedical sensor networks. in the Proc. of 3rd Annual International Conference on Mobile and Ubiquitous Systems, pp. 1–7. San Jose, CA, 2006.Google Scholar
  60. 60.
    Tang, Q., Tummala, N., Gupta, S. K. S., and Schwiebert, L., Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Trans. Biomed. Eng. 52(7):1285–1294, 2005.CrossRefGoogle Scholar
  61. 61.
    Bag, A., and Bassiouni, M. A., Energy efficient thermal aware routing algorithms for embedded biomedical sensor networks. in the Proc. of IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS 2006), pp. 604–609. Vancouver, BC, 2006.Google Scholar
  62. 62.
    Takahashi, D., Xiao, Y., Hu, F., Chen, J., and Sun, Y., Temperature-aware routing for telemedicine applications in embedded biomedical sensor networks. EURASIP Journal on Wireless Communications and Networking, Article ID 572636, 11 pages, 2008.Google Scholar
  63. 63.
    Watteyne, T., Auge-Blum, S., Dohler, M., and Barthel, D., Anybody: a self-organization protocol for body area networks. in the Proc. of Second International Conference on Body Area Networks (BODYNETS 2007). Florence, Italy, 2007.Google Scholar
  64. 64.
    Heinzelman, W. R., Chandrakasan, A., and Balakrishnan, H, Energy-efficient communication protocol for wireless microsensor networks. in the Proc. of 33rd Annual Hawaii International Conference on System Sciences, pp. 8020–8024, 2000.Google Scholar
  65. 65.
    Moh, M., Culpepper, B. J., Dung, L., Moh, T. S., Hamada, T., and Su, C., On data gathering protocols for in-body biomedical sensor networks. in the Proc. of IEEE Conference on Global Telecommunications (GLOBECOM 2005), Vol. 5, 2005.Google Scholar
  66. 66.
    Madan, R., Cui, S., Lall, S., and Goldsmith, N. A., Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Trans. Wirel. Commun. 5(11):3142–3152, 2006.CrossRefGoogle Scholar
  67. 67.
    Melodia, T., Vuran, M., and Pompil, D., The state of the art in cross-layer design for wireless sensor networks. in the Proc. of EuroNGI Workshop on Wireless and Mobility, LNCS 3883, pp. 78–92, 2005.Google Scholar
  68. 68.
    Ruzzelli, A. G., Jurdak, R., OHare, G. M., and Stok, P. V. D., Energy-efficient multi-hop medical sensor networking. in the Proc. of 1st ACM SIGMOBILE international workshop on Systems and networking support for healthcare and assisted living environments, pp. 37–42. ACM: New York, NY, USA, 2007.CrossRefGoogle Scholar
  69. 69.
    Braem, B., Latre, B., Moerman, I., Blondia, C., and Demeester, P., The wireless autonomous spanning tree protocol for multihop wireless body area networks. in the Proc. of 3rd International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 479–486. San Jose, CA, USA, 2006.Google Scholar
  70. 70.
    Latre, B., Braem, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., and Demeester, P., A low-delay protocol for multihop wireless body area networks. in the Proc. of 4th International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 479–486. Philadelphia, PA, USA, 2007.Google Scholar
  71. 71.
    De Poorter, E., Latre, B., Moerman, I., and Demeester, P., Sensor and Ad-Hoc networks: theoretical and algorithmic aspects. Lecture Notes Electrical Engineering, Vol. 7. Springer, Chapter: Universal Framework for Sensor Networks, 2008.Google Scholar
  72. 72.
    Zhou, G., Lu, J., Wan, C. Y., Yarvis, M. D., and Stankovic, J. A., BodyQoS: Adaptive and radio-agnostic QoS for body sensor networks. in the Proc. of 27th Conference on Computer Communications (INFOCOM 2008), pp. 565–573, 2008.Google Scholar
  73. 73.
    Ullah, S., Khan, P., Ullah, N., Higgins, H., Saleem, S., and Kwak, K. S., A review of WBANs for medical applications. International Journal of Communications, Network and System Sciences (IJCNS) 2(8):797–803, 2009.CrossRefGoogle Scholar
  74. 74.
    Lo, B., and Yang, G. Z., Key technical challenges and current implementations of body sensor networks. in the Proc. of IEEE 2nd International Workshop on Body Sensor Networks (BSN 2005), pp. 1–5, 2005.Google Scholar
  75. 75.
    Chu, H. T., Huang, C. C., Lian, Z. H., and Tsai, T. P., A ubiquitous warning system for asthma-inducement. in the Proc. of IEEE International Conference on Sensor networks, Ubiquitous and Thrustworthy Computing, pp. 186–191. Taichung, Taiwan, 2006.Google Scholar
  76. 76.
    Theogarajan, L., Wyatt, J., Rizzo, J., Drohan, B., Markova, M., Kelly, S., Swider, G., Raj, M., Shire, D., Gingerich, M., Lowenstein, J., and Yomtov., B., Minimally invasive retinal prosthesis. In solid-state circuits. in the Proc. of IEEE International Conference Digest of Technical Papers, pp. 99–108, 2006.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sana Ullah
    • 1
  • Henry Higgins
    • 2
  • Bart Braem
    • 3
  • Benoit Latre
    • 4
  • Chris Blondia
    • 3
  • Ingrid Moerman
    • 4
  • Shahnaz Saleem
    • 1
  • Ziaur Rahman
    • 5
  • Kyung Sup Kwak
    • 1
  1. 1.UWB-ITRC Research CenterInha UniversityNam-gu IncheonSouth Korea
  2. 2.Zarlink SemiconductorsWiltshireUK
  3. 3.Department of Mathematics and Computer ScienceUniversity of Antwerp/IBBTAntwerpBelgium
  4. 4.Department of Information TechnologyGhent University/IBBTGentBelgium
  5. 5.Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea

Personalised recommendations