Journal of Medical Systems

, Volume 36, Issue 2, pp 883–892 | Cite as

Automatic Classification of Heartbeats Using Wavelet Neural Network

  • Radhwane Benali
  • Fethi Bereksi Reguig
  • Zinedine Hadj Slimane
ORIGINAL PAPER

Abstract

The electrocardiogram (ECG) signal is widely employed as one of the most important tools in clinical practice in order to assess the cardiac status of patients. The classification of the ECG into different pathologic disease categories is a complex pattern recognition task. In this paper, we propose a method for ECG heartbeat pattern recognition using wavelet neural network (WNN). To achieve this objective, an algorithm for QRS detection is first implemented, then a WNN Classifier is developed. The experimental results obtained by testing the proposed approach on ECG data from the MIT-BIH arrhythmia database demonstrate the efficiency of such an approach when compared with other methods existing in the literature.

Keywords

ECG Feature extraction QRS Classification WNN Wavelet Cardiac arrhythmia 

References

  1. 1.
    Clifford, G. D., Azuaje, F., and McSharry, P. E., Advanced methods and tools for ECG analysis. Boston/London: Artech ouse Publishing, 2006:384.Google Scholar
  2. 2.
    de Chazal, P., O’Dwyer, M., and Reilly, R. B., Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51(7):1196–1206, 2004.CrossRefGoogle Scholar
  3. 3.
    Bortolan, G., Brohet, C., and Fusaro, S., Possibilities of using neural networks for ECG classification. J Electrocardiol 29(Supplement):10–16, 1996.CrossRefGoogle Scholar
  4. 4.
    Minami, K., Nakajima, H., and Toyoshima, T., Real-time discrimination of ventricular tachyarrhythmia with fourier-transform neural network. IEEE Trans Biomed Eng 46(2):179–185, 1999.CrossRefGoogle Scholar
  5. 5.
    Qin, S., Ji, Z., and Zhu, H., The ECG recording analysis instrumentation based on virtual instrument technology and continuous wavelet transform, Proceedings of the 25th Annual International Conference of the IEEE EMBS Cancun, Mexico, September 17–21, 2003, pp. 3176–3179.Google Scholar
  6. 6.
    Dickhaus, H., and Heinrich, H., Classifying biosignals with wavelet networks-a method for noninvasive diagnosis, IEEE Engineering in Medicine and Biology, September/October 1996, pp. 103–111.Google Scholar
  7. 7.
    Lin, C.-H., Du, Y.-C., and Chen, T., Adaptive wavelet network for multiple cardiac arrhythmias recognition. Expert Syst Appl 34(4):2601–2611, 2008.CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Zhu, Y.-S., Thakor, N. V., and Xu, Y.-H., A short-time multifractal approach for arrhythmias detection based on fuzzy neural network. IEEE Trans Biomed Eng 48(9):989–995, 2001.CrossRefGoogle Scholar
  9. 9.
    Lin, C.-H., Classification enhancible grey relational analysis for cardiac arrhythmias discrimination. Med Biol Eng Comput 44(4):311–320, 2006.CrossRefGoogle Scholar
  10. 10.
    Mazel, D. S., and Hayes, M. H., Using iterated function systems to model discrete sequences. IEEE Trans Signal Processing 40(7):1724–1734, 1992.MATHCrossRefGoogle Scholar
  11. 11.
    Vines, G., and Hayes, M. H., III, Nonlinear address maps in a one-dimensional fractal model. IEEE Trans Signal Process 41(4):1721–1724, 1993.CrossRefGoogle Scholar
  12. 12.
    Barnsley, M., Fractal functions and interpolation. Constr Approx 2:303–329, 1986.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Barnsley, M., Fractals everywhere. Academic, New York, 1988.MATHGoogle Scholar
  14. 14.
    Lin, C.-H., and Wang, C.-H., Adaptive wavelet networks for power quality detection and discrimination in a power system. IEEE Trans Power Delivery 21(3):1106–1113, 2006.CrossRefGoogle Scholar
  15. 15.
    Hadj Slimane, Z., and Bereksi Reguig, F., New algorithme for QRS complex detection. J Mech Med Biol (JMMB) 5(4):507–515, 2005.CrossRefGoogle Scholar
  16. 16.
    So, H. H., and Chan, K. L., Development of QRS detection method for real-time ambulatory cardiac monitor, Proc 19th Annu Int Conf IEEE EMBS. Chicago, USA, 289–292, 1997.Google Scholar
  17. 17.
    Zhang, J., Walter, G. G., Miao, Y., and Lee, W. N. W., Wavelet neural networks for function learning. IEEE Trans Signal Processing 43:1485–1497, 1995.CrossRefGoogle Scholar
  18. 18.
    MIT BIH Arrhythmia Database Directory. Physiobank Archive Index, MIT-BIH Arrhythmia Database. Available: <http://www.physionet.org/physiobank/database>.
  19. 19.
    Zhang, Q., Using wavelet network in nonparametric estimation. IEEE Trans on Neural Networks 8(2):227–236, 1997.CrossRefGoogle Scholar
  20. 20.
    Basheer, I. A., and Hajmeer, M., Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Meth 43:3–31, 2000.CrossRefGoogle Scholar
  21. 21.
    Haykin, S., Neural networks: a comprehensive foundation. Macmillan, New York, 1994.MATHGoogle Scholar
  22. 22.
    Szu, H. H., et al., Neural network adaptive wavelets for signal representation and classification. Optical eng 31(9):1907–1916, 1992.CrossRefGoogle Scholar
  23. 23.
    Yacine, O., Réseaux d’ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus. Thèse de Doctorat de l’UNIVERSITÉ PIERRE ET MARIE CURIE (PARIS VI). Spécialité ROBOTIQUE, 1998.Google Scholar
  24. 24.
    Cheng, W., et al., Classification of ECG complexes using self-organizing CMAC. J Meas 42:399–707, 2009.CrossRefGoogle Scholar
  25. 25.
    Vargas, F., Lettnin, D., de Castro, M. C. F., and Macarthy, M., Electrocardiogram pattern recognition by means of MLP network and PCA: a case study on equal amount of input signal types, Proceedings of the VII Brazilian Symposium on Neural Networks, 2002.Google Scholar
  26. 26.
    Minami, K., Nakajima, H., and Toyoshima, T., Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans Biomed Eng 46(2):179–185, 1999.CrossRefGoogle Scholar
  27. 27.
    Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., and Sörnmo, L., Clustering ECG complexes using Hermite functions and self organizing maps. IEEE Trans Biomed Eng 47(7):838–848, 2000.CrossRefGoogle Scholar
  28. 28.
    Fernández-Delgado, M., and Ameneiro, S. B., MART: a multichannel ART based neural network. IEEE Trans Neural Netw 9(1):139–150, 1998.CrossRefGoogle Scholar
  29. 29.
    Linh, T. H., Osowski, S., and Stodolski, M., On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network. IEEE Trans Instrum Meas 52:1224–1231, 2003.CrossRefGoogle Scholar
  30. 30.
    Güler, I., and Übeyli, E. D., ECG beat classifier designed by combined neural network model. Pattern Recognit 38(2):199–208, 2005.Google Scholar
  31. 31.
    Ubeyli, E. D., Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents. Comput Meth Programs Biomed 93:313–321, 2009.CrossRefGoogle Scholar
  32. 32.
    Osowski, S., and Linh, T. H., ECG beat recognition using fuzzy hybrid neural network. IEEE Trans Biomed Eng 48:1265–1271, 2001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Radhwane Benali
    • 1
  • Fethi Bereksi Reguig
    • 1
  • Zinedine Hadj Slimane
    • 1
  1. 1.Biomedical Engineering Laboratory, Department of Electronics, Faculty of Engineering SciencesAbou Bekr Belkaid UniversityTlemcenAlgeria

Personalised recommendations