Journal of Medical Systems

, Volume 36, Issue 2, pp 809–822 | Cite as

Computer-Aided Intelligent System for Diagnosing Pediatric Asthma

  • Maryam Zolnoori
  • Mohammad Hossein Fazel Zarandi
  • Mostafa Moin
  • Hassan Heidarnezhad
  • Anoshirvan Kazemnejad
ORIGINAL PAPER

Abstract

Asthma is a lung chronic inflammatory disorder estimated between 1.4% and 27.1% in different area of the world. Result of various studies show that asthma is usually underdiagnosed especially in developing countries, because of limitations on access to medical specialists and laboratory facilities. In this paper, we report on the development and evaluation of a novel patient-based fuzzy system that promotes the diagnosis method of asthma. The design of this application addresses five critical issues included: 1) modular representation of asthma diagnostic variables regard to patients’ perception of the disease, 2) algorithmic approaches conducting inference of diagnosing based on patient’s response to questions, 4) front-end mechanism for capturing data from patient, 5) output for both patient and physician regard to asthma possibility. for the system output score (0–10) the efficacy of this system calculated in the study sample included 139 asthmatic patients and 139 non-asthmatic patients (age range 6–18) reinforce the sensitivity of 88% and specificity of 100% for cut off value 0.7.

Keyword

Asthma diagnosis Diagnostic value Representing uncertainty Intelligent probing 

References

  1. 1.
    Buist, A. S., Definitions. Asthma COPD 2:1–7, 2009.CrossRefGoogle Scholar
  2. 2.
    Louis, R., Lau, C. K. L., Bron, O. A., Roldaan, C. A., Radermecker, M., and Djukanovi, R., The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med 161:9–15, 2000.Google Scholar
  3. 3.
    Lai, C., Beasley, R., Crane, J., Foliaki, S., Shah, J., and Weiland, S., Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergic in Chilhood (ISAAC). Thorax 64:476–483, 2009.CrossRefGoogle Scholar
  4. 4.
    Masjedi, M. R., Fadaizadeh, L., Najafizadeh, K., and Dokouhaki, P., Prevalence and severity of asthma symptoms in children of Tehran International Study of Asthma and Allergies in Childhood (ISAAC). Iran J Allergy Asthma Immunol 3(1):25–30, 2004.Google Scholar
  5. 5.
    MirSaeid Ghazi, B., Sharifi, S. H., Goodarzipoor, K., Aghamohammadi, A., Atarod, L., Rezaei, N., Kouhi, A., The prevalence of asthma among the students (7–18 years old) in Tehran during 2002–2003. Iran J Allergy Asthma Immunol 3(2):89–92, 2004.Google Scholar
  6. 6.
    Shaya, F. T., Maneval, M. S., Gbarayor, C. M., Sohn, K., Dalal, A. A., Du, D., and Scharf, S. M., Burden of COPD, asthma, and concomitant COPD and asthma among adults: racial disparities in a Medicaid population. Chest 136(2):405–416, 2009.CrossRefGoogle Scholar
  7. 7.
    Blanchette, C. M., Gutierrez, B., Ory, C., Chang, E., and Akazawa, M., Economic burden in direct cost of concomitant chronic obstructive pulmonary disease and asthma in a medicine advantage population. J Manage Care Pham 14(2):176–185, 2008.Google Scholar
  8. 8.
    Agüero-Balbín, R., Aller-Álvarez, J. L., Bazús-González, T., García-Cosio, F. B., de Diego-Damiá, A., Martínez-Moragón, E., Pereira-Vega, A., Plaza-Moral, V., Rodríguez-Trigo, G., and Villa-Asensi, J. R., Guidelines for the diagnosis and management of difficult-to-control asthma. Arch Bronconeumol 41(9):513–23, 2005.Google Scholar
  9. 9.
    Gordon, B. R., Asthma history and presentation. Otolaryngol Clin N Am 41(2):375–385, 2008.CrossRefGoogle Scholar
  10. 10.
    Nelson, B. W., Awad, D., Alexander, J., and Cark, N., The continuing pronlem of asthma in very young children: a community-based participatory research project. J Sch Health 79(5):209–215, 2009.CrossRefGoogle Scholar
  11. 11.
    MirSaeid Ghazi, B., Sharifi, H. S., Goodarzipoor, K., Aghamohammadi, A., Atarod, L., Rezaei, N., and Kouhi, A., The prevalence of asthma among the students (7–18 years old) in Tehran during 2002–2003. Iran J Allergy Asthma Immunol 3(2):89–92, 2004.Google Scholar
  12. 12.
    Phuong, H. N., and Kreinovich, V., Fuzzy logic and its applications in medicine. Int J Med Inform 62:165–173, 2001.CrossRefGoogle Scholar
  13. 13.
    Emami, R. M., Turksen, I. B., and Goldenberg, A. A., A unified parameterized formulation of reasoning in fuzzy modeling and control. Fuzzy Sets Syst 108:59–81, 1999.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Sugeno, M., and Yasukawa, T., A fuzzy-logic-based approach to qualitative modeling. IEEE Trans fuzzy syst 1(1):7–30, 1993.CrossRefGoogle Scholar
  15. 15.
    Pedrycz, W., Why triangular membership functions? Fuzzy Sets Syst 64:21–30, 1994.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zadeh, A. L., Fuzzy logic = Computing with Words. IEEE Trans fuzzy Syst 4(2):103–109, 1996.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Durkin, J., Expert systems: Design and development. Macmillan, UK, 1994.MATHGoogle Scholar
  18. 18.
    Mamdani, E. H., and Assilian, S., An experiment in linguistic synthesis with a fuzzy logic controller. Int Man-Mach Stud 7:1–13, 1975.MATHCrossRefGoogle Scholar
  19. 19.
    Chae, Y. M., and Ho, S. H., Comparison of alternative knowledge model for diagnosis of asthma. Expert Syst Appl 11(4):423–429, 1996.CrossRefGoogle Scholar
  20. 20.
    Oud, M., Lung function interpolation by means of neural-network-supported analysis of respiration sounds. Med Eng Phys 25:309–316, 2003.CrossRefGoogle Scholar
  21. 21.
    Üncü, Ü., Evaluation of pulmonary function tests by using fuzzy logic theory. J Med Syst 34(2):223–417, 2009.Google Scholar
  22. 22.
    Burge, P. S., Pantin, C. F. A., Newton, D. T., Gannon, P. F. G., Bright, P., Belcher, J., McCoach, J., Baldwin, D. R., and Burge, C. B. S. G., Development of an expert system for the interpretation of serial peak expiratory flow measurements in the diagnosis of occupational asthma. Occup Environ Med 56:758–764, 1999.CrossRefGoogle Scholar
  23. 23.
    Chakraborty, C., Mitra, T., Mukherjee, A., and Ray, A. K., CAIDSA: computer-aided intelligent diagnosing system for bronchial asthma. Expert Syst Appl 36:4958–4966, 2009.CrossRefGoogle Scholar
  24. 24.
    Whui, C. B., Yoo, K., Jeong, J., Joo, Y. H., Kim, S., et al., Easy diagnosing of asthma: computer-assisted symptom-based diagnosis. J Korean Med Sci 22(5):832–838, 2007.CrossRefGoogle Scholar
  25. 25.
    Fazel zarandi, M. H., Zolnoori, M., Moeen, M., Fuzzy expert system for diagnosing asthma, submitted in Scientia Iranica, 2009.Google Scholar
  26. 26.
    Miller, L. P., The evaluation of artificial intelligence systems in medicine. Comput Meth Programs Biomed 22(1):3–11, 1986.CrossRefGoogle Scholar
  27. 27.
    Patel, L. V., Shortliffe, H. E., Stefanelli, M., SZolovist, P., Berthold, R. M., Belllazzi, R., and Abu-Hanna, A., the coming of age of artificial intelligence in medicine. Artif Intell Med 46(1):5–17, 2009.CrossRefGoogle Scholar
  28. 28.
    Innocent, P. R., and John, R. I., Computer aided fuzzy medicine diagnosis. Inf Sci 162:81–104, 2004.CrossRefGoogle Scholar
  29. 29.
    Yu, I. T. S., Wong, T. W., and Li, W., Using child reported respiratory symptoms to diagnosis asthma in the community. Arch Dis Child 89:544–548, 2004.CrossRefGoogle Scholar
  30. 30.
    Bousquet, J., Vignola, A. M., and Demoly, P., Links between rhinitis and asthma. Allergy 58:691–706, 2003.CrossRefGoogle Scholar
  31. 31.
    Shapiro, G. G., Among young children who wheeze, which children will have persistent asthma. J Allergy Clin Immunol 118(3):562–S64, 2006.CrossRefGoogle Scholar
  32. 32.
    Callahan, K. A., Matsui, E. C., Curtin-Brosnan, J., Eggleston, P. A., Diette G. B., Infantile eczema as a predictor of asthma and asthma severity in preschoo children. J Allergy. Clin. Immunol. 117(2):S78.Google Scholar
  33. 33.
    Gern, E. G., Rosenthal, A. L., Sorkness, L. R., and Lemanske, R. F., Effects of viral respiratory infections on lung development and childhood asthma. J Allergy Clin Immunol 115(4):668–675, 2005.CrossRefGoogle Scholar
  34. 34.
    Gunnbjörnsdóttir, M. I., Omenaas, E., Gíslason, T., et al., Obesity and nocturnal gastro-oesophageal reflux are related to onset of asthma and respiratory symptoms. Eur Respir J 24:116–121, 2004.CrossRefGoogle Scholar
  35. 35.
    Barros, R., Moreira, A., Fonseca, J., Moreira, P., Fernandes, L., de Oliveira, J. F., Delgado, L., Castel-Branco, M. G., Obesity and airway inflammation in Asthma. J. Allergy Clin. Immunol. 1501–1502, 2006.Google Scholar
  36. 36.
    Von Kries, R., Hermann, M., Grunert, V. P., and von Mutius, E., Is obesity a risk factor for childhood asthma? Allergy 56:318–322, 2001.CrossRefGoogle Scholar
  37. 37.
    Riedler, J., Braun-Fahrländer, C., Eder, W., Schreuer, M., Waser, M., Maisch, S., Carr, D., Schierl, R., Nowak, D., Mutius, V. E., and The AlEX Study Team, Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. J Lattice 358:1129–1133, 2001.Google Scholar
  38. 38.
    Jouni, J. K., Jaakkola, J. K. J., and Gissler, M., Maternal smoking in pregnancy, fetal development, and childhood asthma. Am J Public Health 94(1):136–140, 2004.CrossRefGoogle Scholar
  39. 39.
    Ernst, P., Ghezzo, H., and Becklake, M. R., Risk factors for bronchial. Hyperresponsiveness in late childhood and early adolescence. Eur Respir J 20:635–639, 2002.CrossRefGoogle Scholar
  40. 40.
    Matsumoto, H., Niimi, A., Takemura, M., Ueda, T., Tabuena, R., Yamaguchi, M., Matsuoka, H., Hirai, T., Muro, S., Yutaka, I. Y., Mio, T., Chin, K., Nishiyama, H., and Mishima, M., Prognosis of cough variant asthma: a retrospective analysis. J Asthma 43(2):131–135, 2006.CrossRefGoogle Scholar
  41. 41.
    Bussamra, H. M., Cukeir, A., Stelmach, R., and Rodrigues, C. J., Evaluation of the magnitude of the bronchodilator response in children and adolescents with asthma. Chest 127:530–535, 2005.CrossRefGoogle Scholar
  42. 42.
    Cockcroft, D. W., Bronchoprovocation methods: direct challenges. Clin Rev Allergy Immunol 24(1):19–26, 2003.CrossRefGoogle Scholar
  43. 43.
    Paraskakis, E., Brindicci, C., Fleming, L., Krol, R., et al., Measurement of bronchial and alveolar nitric oxide production in normal children and children with asthma. Am J Respir Crit Care Med 163:1551–1556, 2001.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maryam Zolnoori
    • 1
  • Mohammad Hossein Fazel Zarandi
    • 2
  • Mostafa Moin
    • 3
  • Hassan Heidarnezhad
    • 4
  • Anoshirvan Kazemnejad
    • 5
  1. 1.Mathematic and informatics group, Academic Center for Education, Culture and Research (ACECR)Tarbiat Modares UniversityTehranIran
  2. 2.Department of Industrial EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Immunology, Asthma and Allergy Research InstituteTehran University of Medical SciencesTehranIran
  4. 4.Masih Daneshvari HospitalShahid Beheshti University of Medical SciencesTehranIran
  5. 5.Department of Biostatistics, School of Medical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations