Journal of Medical Systems

, Volume 35, Issue 5, pp 929–939 | Cite as

Accurate Automated Detection of Autism Related Corpus Callosum Abnormalities

  • Ayman El-Baz
  • Ahmed Elnakib
  • Manuel F. Casanova
  • Georgy Gimel’farb
  • Andrew E. Switala
  • Desha Jordan
  • Sabrina Rainey
Original Paper

Abstract

The importance of accurate early diagnostics of autism that severely affects personal behavior and communication skills cannot be overstated. Neuropathological studies have revealed an abnormal anatomy of the Corpus Callosum (CC) in autistic brains. We propose a new approach to quantitative analysis of three-dimensional (3D) magnetic resonance images (MRI) of the brain that ensures a more accurate quantification of anatomical differences between the CC of autistic and normal subjects. It consists of three main processing steps: (i) segmenting the CC from a given 3D MRI using the learned CC shape and visual appearance; (ii) extracting a centerline of the CC; and (iii) cylindrical mapping of the CC surface for its comparative analysis. Our experiments revealed significant differences (at the 95% confidence level) between 17 normal and 17 autistic subjects in four anatomical divisions, i.e. splenium, rostrum, genu and body of their CCs.

Keywords

Segmentation Modeling Autism Corpus callosum 

References

  1. 1.
    Brambilla, P., Hardan, A., and Nemi, S., Brain anatomy and development in autism: Review of MRI studies. Brain Res. Bull. 61:557–569, 2003.CrossRefGoogle Scholar
  2. 2.
    Minshew, N., and Payton, J., New perspectives in autism, part i. the clinical spectrum of autism. Curr. Probl. Pediatr. 18:561–610, 1988.Google Scholar
  3. 3.
    Stevens, M., Fein, D., Dunn, M., Allen, D., Waterhouse, L. H., Feinstein, C., and Rapin, I., Subgroups of children with autism by cluster analysis: A longitudinal examination. J. Am. Acad. Child Adolesc. Psychiatry 39:346–352, 2000.CrossRefGoogle Scholar
  4. 4.
    Kanner, L., Autistic disturbances of affective contact. Nerv. Child 2:250–250, 1943.Google Scholar
  5. 5.
    Aylward, E., Minshew, N., Field, K., Sparks, B., and Singh, N., Effects of age on brain volume and head circumference in autism. Neurology 59(2):175–183, 2002.Google Scholar
  6. 6.
    Courchesne, R., Carper, R., and Akshoomoff, N., Evidence of brain overgrowth in the first year of life in autism. JAMA 290:337–344, 2003.CrossRefGoogle Scholar
  7. 7.
    Casanova, M. F., White matter volume increases and minicolumns in autism. Ann. Neurol. 56(3):453, 2004.CrossRefGoogle Scholar
  8. 8.
    Casanova, M. F., van Kooten, I. A., Switala, A., van Engeland, H., Heinsen, H., Steinbusch, H., Hof, P. R., Trippe, J., Stone, J., and Schmitz, C., Minicolumnar abnormalities in autism. Acta Neuropathological, 2006.Google Scholar
  9. 9.
    Mountcastle, V. B., Perpetual Neuroscience: The Cerebral Cortex. Harvard University Press, Cambridge, 1988.Google Scholar
  10. 10.
    Calvin, W., How Brains Think. Basic Books, New York, 1996.Google Scholar
  11. 11.
    Buxhoeveden, D., and Casanova, M. F., Encephalization, minicolumns, and hominid evolution. In: Casanova, M. F. (Ed.), Neocortical Modularity and the Cell Minicolumn. Nova Biomedical, New York, pp. 117–136, 2005.Google Scholar
  12. 12.
    Gressens, P., and Evrard, P., The glial fascicle: An ontogenic and phylogenic unit guiding, supplying and distributing mammalian cortical neurons. Brain Res. Dev. Brain Res. 76:272–277, 1993.CrossRefGoogle Scholar
  13. 13.
    Fahmi, R., El-Baz, A., Hassan, H., Farag, A., and Casanova, M. F., Classification Techniques for Autistic Vs. Typically Developing Brain Using MRI Data. Proc. of IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’07), Arlington, Virginia, USA 1348–1351, 2007.Google Scholar
  14. 14.
    Casanova, M. F., Farag, A., El-Baz, A., Mott, M., Hassan, H., Fahmi, R., and Switala, A. E., Abnormalities of the gyral window in autism: A macroscopic correlate to a putative minicolumnopathy. J. Spec. Educ. Rehabil. 1:85–101, 2007.CrossRefGoogle Scholar
  15. 15.
    Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., Happe, F., Frith, C., and Frith, U., The neuroanatomy of autism: A voxel-based whole brain analysis of structural scans. NeuroReport 10(8):647–1651, 1999.CrossRefGoogle Scholar
  16. 16.
    Waiter, G., Williams, J., Murray, A., Gilchrist, A., Perrett, D., and Whiten, A., A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. Neuroimage 22:619–625, 2004.CrossRefGoogle Scholar
  17. 17.
    Rojas, D. C., Peterson, E., Winterrowd, E., Reite, M. L., Rogers, S. J., and Tregellas, J. R., Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry 6(56), 2006.Google Scholar
  18. 18.
    Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M. H., Barthelemy, C., Mouren, M. C., Artiges, E., Samson, Y., Brunelle, F., Frackowiak, R. S. J., and Zilbovicius, M., Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23:364–369, 2004.CrossRefGoogle Scholar
  19. 19.
    Statistical Parametric Mapping (SPM) Software, available online: http://www.fil.ion.ucl.ac.uk/spm/
  20. 20.
    Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., Hodgson, J., Adrien, K. T., Steele, S., Makris, N., Kennedy, D., Harris, G. J., and Caviness, V. S., Jr., Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126:1182–1192, 2003.CrossRefGoogle Scholar
  21. 21.
    Waiter, G. D., Williams, J. H., Murray, A. D., Gilchrist, A., Perrett, D. I., and Whiten, A., Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: A voxel-based investigation. Neuroimage 24(2):455–461, 2005.CrossRefGoogle Scholar
  22. 22.
    Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., and Reiss, A. L., White matter structure in autism: Preliminary evidence from diffusion tensor imaging. Biol. Psychiatry 55:323–328, 2004.CrossRefGoogle Scholar
  23. 23.
    El-Baz, A., Casanova, M. F., Gimel’farb, G., Mott, M., and Switala, A. E., Autism Diagnostics by 3D Texture Analysis of Cerebral White Matter Gyrifications. Proc. of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’07), Brisbane, Australia 235–243, 2007.Google Scholar
  24. 24.
    Egaas, B., Courchesne, E., and Saitoh, O., Reduced size of corpus callosum in autism. Arch. Neurol. 52(8):794–801, 1995.CrossRefGoogle Scholar
  25. 25.
    Piven, J., Bailey, J., Ranson, B. J., and Arndt, S., An MRI study of the corpus callosum in autism. Am. J. Psychiatry 154(8):1051–1056, 1997.Google Scholar
  26. 26.
    Manes, F., Piven, J., Vrancic, D., Nanclares, V., Plebst, C., and Starkstein, S., An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. J. Neuropsychiatry Clin. Neurosci. 11(4):470–474, 1999.Google Scholar
  27. 27.
    Hardan, A. Y., Minshew, N. J., and Keshavan, M. S., Corpus callosum size in autism. Neurology 55:1033–1036, 2000.Google Scholar
  28. 28.
    Chung, M. K., Dalton, K. M., Alexander, A. L., and Davidson, R. J., Less white matter concentration in autism: 2D voxel-based morphometry. Neuroimage 23:242–251, 2004.CrossRefGoogle Scholar
  29. 29.
    He, Q., Duan, Y., Miles, J., and Takahashi, N., Statistical Shape Analysis of the Corpus Callosum in Subtypes of Autism, Proc. 7th IEEE Int. Conf. BIBE 1087–1091, 2007.Google Scholar
  30. 30.
    He, Q., Karsch, K., and Duan, Y., Abnormalities in MRI traits of Corpus Callosum in Autism Subtype. in Proc. 30th IEEE Int. Conf. of EMBS pp. 3900–3903, 2008.Google Scholar
  31. 31.
    Vidal, C. N., Nicolson, R., DeVito, T. J., Hayashi, K. M., Geaga, J. A., Drost, D. J., Williamson, P. C., Rajakumar, N., Sui, Y., Dutton, R. A., Toga, A. W., and Thompson, P. M., Mapping corpus callosum deficits in autism: An index of aberrant cortical connectivity. Biol. Psychiatry 60(3):218–225, 2006.CrossRefGoogle Scholar
  32. 32.
    Schinzinger, R., Conformal Mapping: Methods and Applications, Courier Dover Publications, 2003.Google Scholar
  33. 33.
    Wang, S., Wang, Y., Jin, M., Gu, X., and Samaras, D., Conformal geometry and its applications on 3D shape matching, recognition and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7):1029–1220, 2007.CrossRefGoogle Scholar
  34. 34.
    Hong, W., Gu, X., Qiu, F., Jin, M., and Kaufman, A., Conformal virtual colon flattening. Proc. ACM Symp. Solid and Physical Modeling, Wales, UK:85–93, 2006.Google Scholar
  35. 35.
    El-Baz, A., and Gimel’farb G., Image segmentation with a parametric deformable model using shape and appearance priors, Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, AL, USA pp. 1–8, 2008.Google Scholar
  36. 36.
    Farag, A., El-Baz, A., and Gimel’farb, G., Precise segmentation of multi-modal images. IEEE Trans. Image Process. 15(4):952–968, 2006.CrossRefGoogle Scholar
  37. 37.
    Gimel’farb, G., Image Textures and Gibbs Random Fields. Kluwer Academic, Dordrecht, 1999.CrossRefMATHGoogle Scholar
  38. 38.
    El-Baz, A., and Gimel’farb, G., EM based approximation of empirical distributions with linear combinations of discrete Gaussians. Proc. IEEE Int. Conference on Image Processing, San Antonio, Texas, USA 4:373–376, 2007.Google Scholar
  39. 39.
    Viola, P., and Wells, W. M., Alignment by maximization of mutual information. Proc. 5th Int. Conference on Computer Vision16–23, 1995.Google Scholar
  40. 40.
    Cohen, L., and Kimmel, R., Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 24(1):57–78, 1997.CrossRefGoogle Scholar
  41. 41.
    Adalsteinsson, D., and Sethian, J., A fast level set method for propagating interfaces. J. Comput. Phys. 118(2):269–277, 1995.CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Hassouna, M., and Farag, A., Robust Centerline Extraction Framework Using Level Sets, Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA 458–465, 2005.Google Scholar
  43. 43.
    Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W. E., and Willsky, A., A shape based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 22:137–154, 2003.CrossRefGoogle Scholar
  44. 44.
    Cootes, T., and Taylor, C., A mixture model for representing shape variation. Image Vis. Comput. 17(8):567–574, 1999.CrossRefGoogle Scholar
  45. 45.
    Frazier, T. W., and Harden, Y. H., A meta-analysis of the corpus callosum in Autism. Biol. Psychiatry 66(10):935–941, 2009. Nov 15.CrossRefGoogle Scholar
  46. 46.
    Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., and Minshew, N. J., Functional and anatomical cortical underconnectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb. Cortex 17:951–961, 2007.CrossRefGoogle Scholar
  47. 47.
    Boger-Megiddo, I., Shaw, D. W., Friedman, S. D., Sparks, B. F., Artru, A. A., Giedd, J. N., Dawson, G., and Dager, S. R., Corpus callosum morphometrics in young children with autism spectrum disorder. J. Autism Dev. Disord. 36:733–739, 2006.CrossRefGoogle Scholar
  48. 48.
    Rice, S. A., Bigler, E. D., Cleavinger, H. B., Tate, J., Sayer, D. F., McMahon, W., Ozonoff, S., Lu, J., and Lainhart, J. E., Macrocephaly, corpus callosum morphology, and autism. J. Child Neurol. 20:34–41, 2005.CrossRefGoogle Scholar
  49. 49.
    Elia, M., Ferri, R., Musumeci, S. A., Panerai, S., Bottitta, M., and Scuderi, C., Clinical correlates of brain morphometric features of subjects with low-functioning autistic disorder. J. Child Neurol. 15:504–508, 2000.CrossRefGoogle Scholar
  50. 50.
    Gaffney, G. R., Kuperman, S., Tsai, L. Y., Minchin, S., and Hassanein, K. M., Midsaggital magnetic resonance imaging of autism. Br. J. Psychiatry 151:831–833, 1987.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ayman El-Baz
    • 1
  • Ahmed Elnakib
    • 1
  • Manuel F. Casanova
    • 2
  • Georgy Gimel’farb
    • 3
  • Andrew E. Switala
    • 2
  • Desha Jordan
    • 1
  • Sabrina Rainey
    • 1
  1. 1.BioImaging Laboratory, Department of BioengineeringUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Psychiatry and Behavioral ScienceUniversity of LouisvilleLouisvilleUSA
  3. 3.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations