Journal of Medical Systems

, Volume 35, Issue 5, pp 921–928 | Cite as

Unbiased Group-Wise Image Registration: Applications in Brain Fiber Tract Atlas Construction and Functional Connectivity Analysis

  • Xiujuan Geng
  • Hong Gu
  • Wanyong Shin
  • Thomas J. Ross
  • Yihong Yang
Original Paper
  • 101 Downloads

Abstract

We propose an unbiased implicit-reference group-wise (IRG) image registration method and demonstrate its applications in the construction of a brain white matter fiber tract atlas and the analysis of resting-state functional MRI (fMRI) connectivity. Most image registration techniques pair-wise align images to a selected reference image and group analyses are performed in the reference space, which may produce bias. The proposed method jointly estimates transformations, with an elastic deformation model, registering all images to an implicit reference corresponding to the group average. The unbiased registration is applied to build a fiber tract atlas by registering a group of diffusion tensor images. Compared to reference-based registration, the IRG registration improves the fiber track overlap within the group. After applying the method in the fMRI connectivity analysis, results suggest a general improvement in functional connectivity maps at a group level in terms of larger cluster size and higher average t-scores.

Keywords

Group-wise image registration DTI Fractional anisotropy Fiber tract Resting-state fMRI 

Notes

Acknowledgement

This work was supported in part by the Intramural Research Program of the National Institute on Drug Abuse (NIDA), National Institute of Health (NIH).

References

  1. 1.
    Toga, A. W., and Thompson, P. M., The role of image registration in brain mapping. Image Vis. Comput. 19:3–24, 2001.CrossRefGoogle Scholar
  2. 2.
    Maintz, J. B., and Viergever, M. A., A survey of medical image registration. Med. Image Anal. 2:1–36, 1998.CrossRefGoogle Scholar
  3. 3.
    Alexander, D. C., Pierpaoli, C., Basser, P. J., and Gee, J. C., Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20:1131–1139, 2001.CrossRefGoogle Scholar
  4. 4.
    Chiang, M. C., Leow, A. D., Klunder, A. D., Dutton, R. A., Barysheva, M., Rose, S. E., McMahon, K. L., de Zubicaray, G. I., Toga, A. W., and Thompson, P. M., Fluid registration of diffusion tensor images using information theory. IEEE Trans. Med. Imaging 27:442–456, 2008.CrossRefGoogle Scholar
  5. 5.
    Yeo, B. T., Vercauteren, T., Fillard, P., Peyrat, J. M., Pennec, X., Golland, P., Ayache, N., and Clatz, O., DT-REFinD: diffusion tensor registration with exact finite-strain differential. IEEE Trans. Med. Imaging 28:1914–1928, 2009.CrossRefGoogle Scholar
  6. 6.
    Ziyan, U., Sabuncu, M. R., O’Donnell, L. J., and Westin, C. F., Nonlinear registration of diffusion MR images based on fiber bundles. Med. Image Comput.Comput. Assist. Interv. 10:351–358, 2007.Google Scholar
  7. 7.
    Joshi, S., Davis, B., Jomier, M., and Gerig, G., Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23(Suppl 1):S151–S160, 2004.CrossRefGoogle Scholar
  8. 8.
    Zhang, H., Yushkevich, P. A., Rueckert, D., and Gee, J. C., Unbiased white matter atlas construction using diffusion tensor images. Med. Image Comput. Comput. Assist. Interv. 10:211–218, 2007.Google Scholar
  9. 9.
    Geng, X., Christensen, G. E., Gu, H., Ross, T. J., and Yang, Y., Implicit reference-based group-wise image registration and its application to structural and functional MRI. Neuroimage 47:1341–1351, 2009.CrossRefGoogle Scholar
  10. 10.
    Christensen, G. E., and Johnson, H. J., Consistent image registration. IEEE Trans. Med. Imaging 20:568–582, 2001.CrossRefGoogle Scholar
  11. 11.
    Basser, P. J., Mattiello, J., and LeBihan, D., Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103:247–254, 1994.CrossRefGoogle Scholar
  12. 12.
    Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., and Di Chiro, G., Diffusion tensor MR imaging of the human brain. Radiology 201:637–648, 1996.Google Scholar
  13. 13.
    Peng, H., Orlichenko, A., Dawe, R. J., Agam, G., Zhang, S., and Arfanakis, K., Development of a human brain diffusion tensor template. Neuroimage 46:967–980, 2009.CrossRefGoogle Scholar
  14. 14.
    Mori, S., Oishi, K., and Faria, A. V., White matter atlases based on diffusion tensor imaging. Curr. Opin. Neurol. 22:362–369, 2009.CrossRefGoogle Scholar
  15. 15.
    Phan, K. L., Orlichenko, A., Boyd, E., Angstadt, M., Coccaro, E. F., Liberzon, I., and Arfanakis, K., Preliminary evidence of white matter abnormality in the uncinate fasciculus in generalized social anxiety disorder. Biol. Psychiatry 66:691–694, 2009.CrossRefGoogle Scholar
  16. 16.
    McIntosh, A. M., Maniega, S. M., Lymer, G. K., McKirdy, J., Hall, J., Sussmann, J. E., Bastin, M. E., Clayden, J. D., Johnstone, E. C., and Lawrie, S. M., White matter tractography in bipolar disorder and schizophrenia. Biol. Psychiatry 64:1088–1092, 2008.CrossRefGoogle Scholar
  17. 17.
    Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34:537–541, 1995.CrossRefGoogle Scholar
  18. 18.
    Lowe, M. J., Mock, B. J., and Sorenson, J. A., Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119–132, 1998.CrossRefGoogle Scholar
  19. 19.
    Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V., Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100:253–258, 2003.CrossRefGoogle Scholar
  20. 20.
    Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J., Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum. Brain Mapp. 13:43–53, 2001.CrossRefGoogle Scholar
  21. 21.
    Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V., Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101:4637–4642, 2004.CrossRefGoogle Scholar
  22. 22.
    Cox, R. W., AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29:162–173, 1996.CrossRefGoogle Scholar
  23. 23.
    Wang, R., Benner, T., Sorensen, A. G, and Wedeen, V. J., Diffusion toolkit: a software package for diffusion imaging data processing and tractography. Proc. Intl. Soc. Mag. Reson. Med., 2007.Google Scholar
  24. 24.
    Schmahmann, J. D., and Pandya, D. N., Fiber Pathways of the Brain, 2006Google Scholar
  25. 25.
    Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., and Zilles, K., A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335, 2005.CrossRefGoogle Scholar
  26. 26.
    Geng, X., Transitive inverse-consistent image registration and evaluation, 2007.Google Scholar
  27. 27.
    Tuch, D. S., Reese, T. G., Wiegell, M. R., and Wedeen, V. J., Diffusion MRI of complex neural architecture. Neuron 40:885–895, 2003.CrossRefGoogle Scholar
  28. 28.
    Geng, X., Ross, T. J., Zhan, W., Gu, H., Chao, Y. P., Lin, C. P., Christensen, G. E., Schuff, N., and Yang, Y., Diffusion MRI registration using orientation distribution functions. Inf. Process. Med. Imaging 21:626–637, 2009.CrossRefGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • Xiujuan Geng
    • 1
  • Hong Gu
    • 1
  • Wanyong Shin
    • 1
  • Thomas J. Ross
    • 1
  • Yihong Yang
    • 1
  1. 1.Neuroimaging Research BranchNational Institute on Drug AbuseBaltimoreUSA

Personalised recommendations