Journal of Medical Systems

, Volume 34, Issue 4, pp 643–650 | Cite as

Recurrent Neural Networks for Diagnosis of Carpal Tunnel Syndrome Using Electrophysiologic Findings

  • Konuralp Ilbay
  • Elif Derya Übeyli
  • Gul Ilbay
  • Faik Budak
Original Paper

Abstract

This paper presents the use of recurrent neural networks (RNNs) for diagnosis of carpal tunnel syndrome (CTS) (normal, right CTS, left CTS, bilateral CTS). The RNN is trained with the Levenberg-Marquardt algorithm. The RNN is trained on the features of CTS (right median motor latency, left median motor latency, right median sensory latency, left median sensory latency). The multilayer perceptron neural network (MLPNN) is also implemented for comparison the performance of the classifiers on the same diagnosis problem. The total classification accuracy of the RNN is significantly high (94.80%). The obtained results confirmed the validity of the RNNs to help in clinical decision-making.

Keywords

Carpal tunnel syndrome Median motor latency Median sensory latency Clasification accuracy Recurrent neural network 

References

  1. 1.
    Bland, J. D., Carpal tunnel syndrome. BMJ. 335:343–346, 2007. doi:10.1136/bmj.39282.623553.AD.CrossRefGoogle Scholar
  2. 2.
    Aroori, S., and Spence, R. A., Carpal tunnel syndrome. Ulster Med. J. 77:6–17, 2008.Google Scholar
  3. 3.
    Preston, D. C., and Shapiro, B. E., Electromyography and neuromuscular disorders. Elsevier Science, Philadelphia, pp. 255–281, 2005.Google Scholar
  4. 4.
    Haykin, S., Neural networks: A Comprehensive Foundation. Macmillan, New York, 1994.MATHGoogle Scholar
  5. 5.
    Basheer, I. A., and Hajmeer, M., Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods. 43 (1)3–31, 2000. doi:10.1016/S0167-7012(00)00201-3.CrossRefGoogle Scholar
  6. 6.
    Chaudhuri, B. B., and Bhattacharya, U., Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing. 34:11–27, 2000. doi:10.1016/S0925-2312(00)00305-2.MATHCrossRefGoogle Scholar
  7. 7.
    Miller, A. S., Blott, B. H., and Hames, T. K., Review of neural network applications in medical imaging and signal processing. Med. Biol. Eng. Comput. 30:449–464, 1992. doi:10.1007/BF02457822.CrossRefGoogle Scholar
  8. 8.
    Mobley, B. A., Schechter, E., Moore, W. E., McKee, P. A., and Eichner, J. E., Predictions of coronary artery stenosis by artificial neural network. Artif. Intell. Med. 18:187–203, 2000. doi:10.1016/S0933-3657(99)00040-8.CrossRefGoogle Scholar
  9. 9.
    Übeyli, E. D., Comparison of different classification algorithms in clinical decision-making. Expert Syst. 24 (1)17–31, 2007. doi:10.1111/j.1468-0394.2007.00418.x.CrossRefGoogle Scholar
  10. 10.
    Übeyli, E. D., Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Comput. Biol. Med. 38 (1)14–22, 2008. doi:10.1016/j.compbiomed.2007.07.004.CrossRefGoogle Scholar
  11. 11.
    Übeyli, E. D., Combining neural network models for automated diagnostic systems. J. Med. Syst. 30 (6)483–488, 2006. doi:10.1007/s10916-006-9034-z.CrossRefGoogle Scholar
  12. 12.
    Übeyli, E. D., A mixture of experts network structure for breast cancer diagnosis. J. Med. Syst. 29 (5)569–579, 2005. doi:10.1007/s10916-005-6112-6.CrossRefGoogle Scholar
  13. 13.
    Übeyli, E. D., Multiclass support vector machines for diagnosis of erythemato-squamous diseases. Expert Syst. Appl. 35 (4)1733–1740, 2008. doi:10.1016/j.eswa.2007.08.067.CrossRefGoogle Scholar
  14. 14.
    Übeyli, E. D., Modified mixture of experts for diabetes diagnosis. J. Med. Syst. 2009 (in press).Google Scholar
  15. 15.
    Übeyli, E. D., Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer. J. Med. Syst. 2009 (in press)Google Scholar
  16. 16.
    Übeyli, E. D., and Doğdu, E., Automatic detection of erythemato-squamous diseases using k-means clustering. J. Med. Syst. 2009 (in press)Google Scholar
  17. 17.
    Übeyli, E. D., İlbay, K., İlbay, G., Sahin, D., and Akansel, G., Differentiation of two subtypes of adult hydrocephalus by mixture of experts. J. Med. Syst. 2009 (in press).Google Scholar
  18. 18.
    Elman, J. L., Finding structure in time. Cogn. Sci. 14 (2)179–211, 1990.CrossRefGoogle Scholar
  19. 19.
    Übeyli, E. D., Recurrent neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals. Expert Syst. Appl. 34 (4)2538–2544, 2008. doi:10.1016/j.eswa.2007.04.002.CrossRefGoogle Scholar
  20. 20.
    Übeyli, E. D., Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients. Comput. Biol. Med. 38 (3)401–410, 2008. doi:10.1016/j.compbiomed.2008.01.002.CrossRefGoogle Scholar
  21. 21.
    Übeyli, E. D., Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks. Digit. Signal Process. 19 (1)134–143, 2009. doi:10.1016/j.dsp.2008.07.007.CrossRefGoogle Scholar
  22. 22.
    Übeyli, E. D., Combining recurrent neural networks with eigenvector methods for classification of ECG beats. Digit. Signal Process. 19 (2)320–329, 2009. doi:10.1016/j.dsp.2008.09.002.CrossRefGoogle Scholar
  23. 23.
    Übeyli, E. D., and Übeyli, M., Case studies for applications of Elman Recurrent Neural Networks, Recurrent Neural Networks, I-Tech Education and Publishing, Editors: Xiaolin Hu, P. Balasubramaniam, ISBN 978-953-7619-08-4, Chapter 17, pp. 357–376, 2008.Google Scholar
  24. 24.
    Budak, F., Yenigun, N., Ozbek, A., et al., Carpal tunnel syndrome in carpet weavers. Electromyogr. Clin. Neurophysiol. 41:29–32, 2001.Google Scholar
  25. 25.
    Pineda, F. J., Generalization of back-propagation to recurrent neural networks. Phys. Rev. Lett. 59 (19)2229–2232, 1987. doi:10.1103/PhysRevLett.59.2229.CrossRefMathSciNetGoogle Scholar
  26. 26.
    Battiti, R., First- and second-order methods for learning: between steepest descent and Newton’s method. Neural Comput. 4:141–166, 1992. doi:10.1162/neco.1992.4.2.141.CrossRefGoogle Scholar
  27. 27.
    Hagan, M. T., and Menhaj, M. B., Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5 (6)989–993, 1994. doi:10.1109/72.329697.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Konuralp Ilbay
    • 1
  • Elif Derya Übeyli
    • 2
  • Gul Ilbay
    • 3
  • Faik Budak
    • 4
  1. 1.Departmant of Neurosurgery, Faculty of MedicineKocaeli UniversityKocaeliTurkey
  2. 2.Department of Electrical and Electronics Engineering, Faculty of EngineeringTOBB Ekonomi ve Teknoloji ÜniversitesiAnkaraTurkey
  3. 3.Departmant of Physiology, Faculty of MedicineKocaeli UniversityKocaeliTurkey
  4. 4.Departmant of Neurology, Faculty of MedicineKocaeli UniversityKocaeliTurkey

Personalised recommendations