Journal of Medical Systems

, Volume 34, Issue 1, pp 1–13

A Statistical Segmentation Method for Measuring Age-Related Macular Degeneration in Retinal Fundus Images

  • Cemal Köse
  • Uğur Şevik
  • Okyay Gençalioğlu
  • Cevat İkibaş
  • Temel Kayıkıçıoğlu
Original Paper


Day by day, huge amount of information is collected in medical databases. These databases include quite interesting information that could be exploited in diagnosis of illnesses and medical treatment of patients. Classification of these data is getting harder as the databases are expanded. On the other hand, automated image analysis and processing is one of the most promising areas of computer vision used in medical diagnosis and treatment. In this context, retinal fundus images, offering very high resolutions that are sufficient for most of the clinical cases, provide many indications that could be exploited in diagnosing and screening retinal degenerations or diseases. Consequently, there is a strong demand in developing automated evaluation systems to utilize the information stored in the medical databases. This study proposes an automatic method for segmentation of ARMD in retinal fundus images. The method used in the automated system extracts lesions of the ARMD by employing a statistical method. In order to do this, the statistical segmentation method is first used to extract the healthy area of the macula that is more familiar and regular than the unhealthy parts. Here, characteristic images of the patterns of the macula are extracted and used to segment the healthy textures of an eye. In addition to this, blood vessels are also extracted and then classified as healthy regions. Finally, the inverse image of the segmented image is generated which determines the unhealthy regions of the macula. The performance of the method is examined on various quality retinal fundus images. Segmented images are also compared with consecutive images of the same patient to follow up the changes in the disease.


Medical image analysis Statistical segmentation Retina Optic disc Macula Age-related macular degenerations Automatic diagnosis 


  1. 1.
    Abramoff, M. D., Alward, W. L. M., Greenlee, E. C. et al, Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features. Invest. Ophthalmol. Vis. Sci. 48:41665–1673, 2007. doi:10.1167/iovs.06-1081.CrossRefGoogle Scholar
  2. 2.
    Al-Rawi, M., Qutaishat, M., and Arrar, M., An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37:2262–267, 2007. doi:10.1016/j.compbiomed.2006.03.003.CrossRefGoogle Scholar
  3. 3.
    Chrastek, R., Wolf, M., Donath, K. et al, Automated segmentation of the optic nerve head for diagnosis of glaucoma. Med. Image Anal. 9:4297–314, 2005. doi:10.1016/ Scholar
  4. 4.
    Hart, W. E., Cote, B., Kube, P., Goldbaum, M., and Nelson, M., Automatic segmentation and classification of objects in retinal images. Computer Science and Engineering University of California, San Diego, 1994, June 24.Google Scholar
  5. 5.
    Köse, C., Fully automatic segmentation of coronary vessel structures in poor quality X-ray angiograms images. Lect. Notes Comput. Sci. 4109:72–82, 2006.Google Scholar
  6. 6.
    Köse, C., Şevik, U., and Gençalioğlu, O., Automatic segmentation of age-related macular degeneration in retinal fundus images. Comput. Biol. Med. 38:611–619, 2008.CrossRefGoogle Scholar
  7. 7.
    Köse, C., Gençalioğlu, O., and Şevik, U., An automatic diagnosis method for the knee meniscus tears in MR images. Expert Syst. Appl. 2008, doi:10.1016/j.eswa.2007.11.036.
  8. 8.
    Lalonde, M., Beaulieu, M., and Gagnon, L., Fast and robust optic disk detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans. Med. Imag. 20:1193–1200, 2001 doi:10.1109/42.963823.CrossRefGoogle Scholar
  9. 9.
    Li, H., and Chutatape, O., Automatic location of optic disk in retinal images. Proc. IEEE-ICIP. 2:837–840, 2001.Google Scholar
  10. 10.
    Mendels, F., Heneghan, C., Harper, P. D., Reilly, R. B., and Thiran, J.-P. (1999). Extraction of the optic disk boundary in digital fundus images. In Proc. 1st Joint BMES/EMBS Conf., pp. 1139.Google Scholar
  11. 11.
    Narasimha-Iyer, H., Can, A., Roysam, B., Stewart, C. V., Tanenbaum, H. L., Majerovics, A. et al, Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy. IEEE Trans. Biomed. Eng. 53:61084–1098, 2006. doi:10.1109/TBME.2005.863971.CrossRefGoogle Scholar
  12. 12.
    Nayak, J., Bhat, P. S., Acharya, U. R. et al, Automated identification of diabetic retinopathy stages using digital fundus images. J. Med. Syst. 32:2107–115, 2008, doi:10.1007/s10916-007-9113-9.CrossRefGoogle Scholar
  13. 13.
    Niemeijer, M., van Ginneken, B., Russell, S. R. et al, Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Invest. Ophthalmol. Vis. Sci. 48:52260–2267, 2007, doi:10.1167/iovs.06-0996.CrossRefGoogle Scholar
  14. 14.
    Niemeijer, M., Abramoff, M. D., and van Ginneken, B., Segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Trans. Biomed. Eng. 26:1116–127, 2007.Google Scholar
  15. 15.
    Osareh, A., Mirmehdi, M., Thomas, B., and Markham, R. (2002). Comparison of color spaces for optic disc localization in retinal images. In Proc. 16th IEEE Int. Conf. Pattern Recognition, vol. 1, pp. 743–746.Google Scholar
  16. 16.
    Rapantzikos, K., Zervakis, M. (2001). Nonlinear enhancement and segmentation algorithm for the detection of age-related macular degeneration (AMD) in human eye’s retina. In Image Processing, 2001. Proc. Int. Conf. Vol. 3, pp 1055–1058Google Scholar
  17. 17.
    Rapantzikos, K., Zervakis, M., and Balas, K., Detection and segmentation of drusen deposits on human retina: Potential in the diagnosis of age-related macular degeneration. Med. Image Anal. 7:195–108, 2003, doi:10.1016/S1361-8415(02)00093-2.CrossRefGoogle Scholar
  18. 18.
    Reza, A. W., Eswaran, C., and Hati, S., Diabetic retinopathy: A quadtree based blood vessel detection algorithm using RGB components in fundus images. J. Med. Syst. 32:2147–155, 2008, doi:10.1007/s10916-007-9117-5.CrossRefGoogle Scholar
  19. 19.
    Pakin, S. K., Tamez-Pena, J. G., Totterman, S., and Parker, K. J., Segmentation, surface extraction and thickness computation of articular cartilage. SPIE. Med. Imaging. 4684:155–166, 2002.Google Scholar
  20. 20.
    Pitas, I., and Venetsanopoulos, A. N., Nonlinear digital filters: Principles and applications. Kluwer Academic, Amsterdam, 1990.MATHGoogle Scholar
  21. 21.
    Shieh, Y. Y., and Perng, G. (2005). An automatic image segmentation software can precisely quantitate the severity of corneal disease digitally captured from viral infected eyes. Investig. Ophthalmol. Vis. Sci., 46:E-Abstract 2731.Google Scholar
  22. 22.
    Sinthanayothin, C., Boyce, J. F., Cook, H. L., and Williamson, T. H., Automated location of the optic disk, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83:8902–909, 1999.CrossRefGoogle Scholar
  23. 23.
    Smith, T., Sivagnanavel, V., Chan, J. K., et al, (2004). An inter-institutional comparative study of drusen segmentation and quantification using a digital technique of fundus background reconstruction. Investig. Ophthalmol. Vis. Sci. 45.Google Scholar
  24. 24.
    Smith, R. T., Chan, J. K., Nagasaki, T. et al, Automated detection of macular drusen using geometric background leveling and threshold selection. Arch. Ophthalmol. 123:200–206, 2005, doi:10.1001/archopht.123.2.200.CrossRefGoogle Scholar
  25. 25.
    Song, J. T., Chi, Z. R., Wang, Z. Y. et al, Locating human eyes using edge and intensity information. Lect. Notes Comput. Sci. 3645:492–501, 2005. doi:10.1007/11538356_51.CrossRefGoogle Scholar
  26. 26.
    Sonka, M., Hlavac, V., and Boyle, R., Image processing, “analysis and machine vision”. Cole, Brooks, 1999.Google Scholar
  27. 27.
    Stammberger, T., Eckstein, F., Michaelis, M., Englmeier, K.-H., and Reiser, M., Interobserver reproducibility of quantitative cartilage measurements: Comparison of B-spline snakes and manual segmentation. Magn. Reson. Imag. 17:1033–1042, 1999. doi:10.1016/S0730-725X(99)00040-5.CrossRefGoogle Scholar
  28. 28.
    Stewart, C. V., Computer vision algorithms for retinal image analysis: Current results and future directions. Lect. Notes Comput. Sci. 3765:31–50, 2005.CrossRefGoogle Scholar
  29. 29.
    Xu, J. A., and Chutatape, O., Auto-adjusted 3-D optic disk viewing from low-resolution stereo fundus image. Comput. Biol. Med. 36:9921–940, 2006. doi:10.1016/j.compbiomed.2005.05.001.CrossRefGoogle Scholar
  30. 30.
    Vermeer, K. A., Vos, F. M., Lemij, H. G. et al, A model based method for retinal blood vessel detection. Comput. Biol. Med. 34:3209–219, 2004. doi:10.1016/S0010-4825(03)00055-6.CrossRefGoogle Scholar
  31. 31.
    Walter, T., Klein, J. C., Massin, P., and Erginay, A., A contribution of image processing to the diagnosis of diabetic retinopathy—Detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imag. 21:1236–1243, 2002. doi:10.1109/TMI.2002.806290.CrossRefGoogle Scholar
  32. 32.
    Wilson, M., Soliz, P., and Nemeth, S. C., Computer-aided methods for quantitative assessment of longitudinal changes in retinal images presenting with maculopathy. Med. Imag. 4681:150–170, 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Cemal Köse
    • 1
  • Uğur Şevik
    • 1
  • Okyay Gençalioğlu
    • 2
  • Cevat İkibaş
    • 1
  • Temel Kayıkıçıoğlu
    • 3
  1. 1.Department of Computer Engineering, Faculty of EngineeringKaradeniz Technical UniversityTrabzonTurkey
  2. 2.Department of Data Processing Center, Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
  3. 3.Department of Electrical and Electronic EngineeringKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations