Journal of Medical Systems

, Volume 33, Issue 4, pp 261–266 | Cite as

Non-constrained Blood Pressure Monitoring Using ECG and PPG for Personal Healthcare

Original Paper

Abstract

Blood pressure (BP) is one of the important vital signs that need to be monitored for personal healthcare. Arterial blood pressure (BP) was estimated from pulse transit time (PTT) and PPG waveform. PTT is a time interval between an R-wave of electrocardiography (ECG) and a photoplethysmography (PPG) signal. This method does not require an aircuff and only a minimal inconvenience of attaching electrodes and LED/photo detector sensors on a subject. PTT computed between the ECG R-wave and the maximum first derivative PPG was strongly correlated with systolic blood pressure (SBP) (R = −0.712) compared with other PTT values, and the diastolic time proved to be appropriate for estimation diastolic blood pressure (DBP) (R = −0.764). The percent errors of SBP using the individual regression line (4–11%) were lower than those using the regression line obtained from all five subjects (9–14%). On the other hand, the DBP estimation did not show much difference between the individual regression (4–10%) and total regression line (6–10%). Our developed device had a total size of 7 × 13.5 cm and was operated by single 3-V battery. Biosignals can be measured for 72 h continuously without external interruptions. Through a serial network communication, an external personal computer can monitor measured waveforms in real time. Our proposed method can be used for non-constrained, thus continuous BP monitoring for the purpose of personal healthcare.

Keywords

Blood pressure Pulse transit time Health monitor Personal healthcare 

References

  1. 1.
    Chen, Y., Li, L., Hershler, C., and Dill, R. P., Continuous non-invasive blood pressure monitoring method and apparatus. US patent. 6,893,401 B2, 2005.Google Scholar
  2. 2.
    Nichols, W., and O’Rourke, M., Mcdonalds blood flow in arteries. Arnold, London, 1998.Google Scholar
  3. 3.
    Webster, J. G., Medical instrumentation: Application of design. Wiley, New York, 1998.Google Scholar
  4. 4.
    Hosaka, H., Sakata, H., Sugo, Y., Sohma, T., and Kasuya, H., Pulse-wave propagation time basis blood pressure monitor. US patent, 5, 649,543, 1998.Google Scholar
  5. 5.
    Teng, X. F., and Zhang, Y. T., Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach. Pro. 25 Ann. IEEE EMBS, 3153–3156, 2003.Google Scholar
  6. 6.
    Yoon, G., Lee, J. Y., Jeon, K. J., Park, K. K., and Kim, H. S., Development of a compact home health monitor for telemedicine. Telemedicine and e-Health. 11(6):660–667, 2005.CrossRefGoogle Scholar
  7. 7.
    Barschdorff, D., and Erig, M., Continuous blood pressure monitoring during stress ECG. Biomed. Tech. (Berl.) 43, 34–39, 1998.Google Scholar
  8. 8.
    Naschitz, J. E., Bezobchuk, S., Priselac, R., Sundick, S., Dreyfuss, D., Khorshidi, I. et al, Pulse transit time by R-wave-gated infrared photoplethysmography: review of the literature and personal experience. J. Clin. Monit. Comput. 18:333–342, 2004. doi:10.1007/s10877-005-4300-z.CrossRefGoogle Scholar
  9. 9.
    Curb, J. D., Labarthe, D. R., Cooper, S. P., Cutter, G. R., and Hawkins, C. M., Training and certification of blood pressure observers. Hypertension. 5:610–614, 1983.Google Scholar
  10. 10.
    Geddes, L. A., Voelz, M. H., Babbs, C. F., Bourland, J. D., and Tacker, W. A., Pulse transit time as an indicator of arterial blood pressure. Psychophysiol. 18:71–74, 1981. doi:10.1111/j.1469-8986.1981.tb01545.x.CrossRefGoogle Scholar
  11. 11.
    Yano, K., Kimora, T., Sato, Y., Nichiwaki, K., and Shimada, Y., Delay time between the R-wave and maximum pulse wave upstroke reflects alterations in blood pressure. Anesthesiol. 96:A491, 2002.Google Scholar
  12. 12.
    Awad, A. A., Ghobashy, M. A., Stout, R. G., Silverman, D. G., and Shelley, K., Blood pressure determination using the pulse oximeter waveform’. Retrieved from www.gasnet.org/interface/12.1.2abstract4.html, 2001.
  13. 13.
    Chen, W., Tobahashi, T., Ichikawa, S., Takeuchi, Y., and Togawa, T., Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput. 38:569–574, 2000. doi:10.1007/BF02345755.CrossRefGoogle Scholar
  14. 14.
    Payne, R. A., Symeonides, C. N., Webb, D. J., and Maxwell, S. R., Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 100:136–141, 2006. doi:10.1152/japplphysiol.00657.2005.CrossRefGoogle Scholar
  15. 15.
    Allen, J., and Murray, A., Age-related changes in peripheral pulse timing characteristics at the ears fingers and toes. J. Hum. Hypertens. 16:711–717, 2006. doi:10.1038/sj.jhh.1001478.CrossRefGoogle Scholar
  16. 16.
    Jago, J. R., and Murray, A., Repeatability of peripheral pulse measurements on ears, fingers and toes using photoelectric plethysmography. Clin. Phys. Physiol. Meas. 9:319–330, 1988. doi:10.1088/0143-0815/9/4/003.CrossRefGoogle Scholar
  17. 17.
    O’Rourke, M., and Gallangher, D. E., Pulse wave analysis. J. Hypertens. 14:147–157, 1996. doi:10.1097/00004872-199602000-00001.CrossRefGoogle Scholar
  18. 18.
    Martens, H. A., and Dardenne, P., Validation and verification of regression in small data sets. Chemometr. Intell. Lab. Syst. 44:99–122, 1998.CrossRefGoogle Scholar
  19. 19.
    Stone, M., An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J. R. Stat. Soc. B. 38:44–47, 1977.Google Scholar
  20. 20.
    Bland, J. M., and Altman, D. G., Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1:307–310, 1986.Google Scholar
  21. 21.
    Chawla, R., Kumarvel, V., Girdhar, K. K., and Sethi, A. K., Can pulse oximetery be used to measure systolic blood pressure. Anesth. Analg. 74:196–200, 1992.Google Scholar
  22. 22.
    Allen, J., and Murray, A., Prospective assessment of an artificial neural network for the detection of peripheral vascular disease from lower limb pulse waveforms. Physiol. Meas. 16:29–38, 1995. doi:10.1088/0967-3334/16/1/003.CrossRefGoogle Scholar
  23. 23.
    Robert, A. A., John, A. S., Dennis, M. D., Mark, A. W., and Taylor, C. B., The covariation of blood pressure and pulse transit time in hypertensive patients. Psychophysiology. 18:301–306, 1981. doi:10.1111/j.1469-8986.1981.tb03038.x.CrossRefGoogle Scholar
  24. 24.
    Smith, R. P., Argod, J., Peping, J. L., and Levy, P. A., Pulse transit time: an appraisal of potential clinical applications. Thorax. 54:452–458, 1999.CrossRefGoogle Scholar
  25. 25.
    Wippermann, C. F., Schranz, D., and Huth, R. G., Evaluation of the pulse wave arrival time as a marker for blood pressure changes in critically ill infants and children. J. Clin. Monit. 11, 324–328, 1995. doi:10.1007/BF01616991.Google Scholar
  26. 26.
    Trzeciak, B. G., Siebert, J., Scislo, J., Jaskiewicz, M., and Babinska, Z., Telemedicine: the determination of fatal cardiovascular risk in internet users population. Comput. Cardiol. 32:367–370, 2005. doi:10.1109/CIC.2005.1588113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute for Biomedical ElectronicsSeoul National University of TechnologySeoulSouth Korea
  2. 2.Department of Electronics & InformationSeoul National University of TechnologySeoulSouth Korea

Personalised recommendations