Journal of Medical Systems

, 31:453 | Cite as

A Methodology for Using Simulation to Optimize Emergency Mass Vaccination Parameters

  • Arben AsllaniEmail author
  • Parthasarati Dileepan
  • Lawrence Ettkin


For any preparedness plan to be effective it must be put to test or verified. Simulation methodology shows high potential for studying disaster and mass vaccination preparedness. Unlike physical drills, simulation models are less expensive, take less time to be conducted, and are well suited for testing alternative solutions. The decision makers can modify and analyze the model in order to test and evaluate numerous scenarios and operating parameters. In this paper, we offer a systematic approach that can be used with simulation analysis by practitioners to develop operating decisions for emergency preparedness in general and mass vaccination clinics in particular. An actual mass vaccination center in a county health department of a southern state is used to illustrate the proposed methodology.


Mass vaccination Simulation methodology Stochastic system design 


  1. 1.
    Aaby, K., Herrmann J. W., Jordan C., Treadwell M., and Wood K., Improving Mass vaccination clinic operations. Proceedings of the International Conference on Health Sciences Simulation, New Orleans, Louisiana, January 23–27, 2005.Google Scholar
  2. 2.
    Anonymous, Thwarting bioterrorism with simulation. Ind. Eng. 36(11):18–19, Nov 2004.Google Scholar
  3. 3.
    Anonymous, Smallpox Mass Vaccination—An Operational Planning Framework, Available at, September 20, 2005.
  4. 4.
    Balicer, R. D., Huerta, M., Levy, Y., Davidovitch, N., Grotto, I., Influenza outbreak control in confined settings. Emerg. Infect. Dis. 11(4):225–230, April 2005, Available from Google Scholar
  5. 5.
    Carley, K., Fridsma, D., Casman, E., Altman, N., Chang, J., Kaminsky, B., Nave, D., and Yahja1 A., BioWar: Scalable Multi-Agent Social and Epidemiological Simulation of Bioterrorism Events, 2004.Google Scholar
  6. 6.
    Clawson, A., Menachemi, N., Beitsch, L., Brooks, R. G., Are Community Health Centers Prepared for Bioterrorism? Biosecur. Bioterror. 4(1):55–63, Mar 2006.CrossRefGoogle Scholar
  7. 7.
    Harrell, C. R., Bateman, R. E., Gogg, T. J., & Mott, J. R. A. (1995). System Improvement Using Simulation, (3rd Ed.). Orem, UT: PROMODEL Corporation.Google Scholar
  8. 8.
    Ingolfsson, A., Erkut, E., and Budge S., Simulation of single start station for Edmonton EMS, J. Oper. Res. Soc. 54(7):736, Jul 2003.zbMATHCrossRefGoogle Scholar
  9. 9.
    Tucker, J. B., Historical trends related to bioterrorism: An empirical analysis. Emerg. Infect. Dis. 5(4):498–504 July. August 1999.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kaplan, E. H., Craft, D. L., and Wein, L. M., Emergency response to a smallpox attack: the case for mass vaccination. Proc. Natl. Acad. Sci. U. S. A. 99(16):10935–10940, Aug 6 2002.CrossRefGoogle Scholar
  11. 11.
    Krause R., The swine flu episode and the fog of epidemics. Emerg. Infect. Dis. 12(1):40–43, January 2006.Google Scholar
  12. 12.
    Sinreich D., and Marmor, Y., Emergency department operations: the basis for developing a simulation tool. IIE Trans. 37(3):233–246, March 2005.CrossRefGoogle Scholar
  13. 13.
    Ulgen O. M., Black J. J., Johnsonbaugh B., Klungle R., SIMULATION METHODOLOGY—A PRACTITIONER’S PERSPECTIVE”,
  14. 14.
    Simulation Software Survey:Vendor List, OR/MS Today, December 2005,

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Arben Asllani
    • 1
    Email author
  • Parthasarati Dileepan
    • 1
  • Lawrence Ettkin
    • 1
  1. 1.Department of ManagementUniversity of Tennessee—ChattanoogaChattanoogaUSA

Personalised recommendations