Journal of Medical Systems

, Volume 31, Issue 2, pp 117–123 | Cite as

Efficacy of Interferon Treatment for Chronic Hepatitis C Predicted by Feature Subset Selection and Support Vector Machine

  • Jun Yang
  • Anto Satriyo Nugroho
  • Kazunobu Yamauchi
  • Kentaro Yoshioka
  • Jiang Zheng
  • Kai Wang
  • Ken Kato
  • Susumu Kuroyanagi
  • Akira Iwata
Original Paper


Chronic hepatitis C is a disease that is difficult to treat. At present, interferon might be the only drug, which can cure this kind of disease, but its efficacy is limited and patients face the risk of side effects and high expense, so doctors considering interferon must make a serious choice. The purpose of this study is to establish a simple model and use the clinical data to predict the interferon efficacy. This model is a combination of Feature Subset Selection and the Classifier using a Support Vector Machine (SVM). The study indicates that when five features have been selected, the identification by the SVM is as follows: the identification rate for the effective group is 85%, and the ineffective group 83%. Analysis of selected features show that HCV-RNA level, hepatobiopsy, HCV genotype, ALP and CHE are the most significant features. The results thus serve for the doctors’ reference when they make decisions regarding interferon treatment.


Chronic Hepatitis C (CHC) Interferon (IFN) Support Vector Machine (SVM) Feature Subset Selection (FSS) Predict 



J.Y and A.S.N contributed equally to this study. The research of A.S.N is partially supported by a Grant-in-Aid for Private University High-Tech Research Center from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Hoofnagle, J. H., Mullen, K. D., Jones, D. B., and Rustgi, V., Treatment of chronic non-A, non-B hepatitis with recombinant human alpha interferon. A preliminary report. N. Engl. J. Med. 315:1575–1578, 1986.CrossRefGoogle Scholar
  2. 2.
    Davis, G. L., Balart, L. A., Schiff, E. R., and Lindsay, K., Treatment of chronic hepatitis C with recombinant interferon alfa. A multicenter randomized, controlled trial. N. Engl. J. Med. 321:1501–1506, 1989.CrossRefGoogle Scholar
  3. 3.
    Di Bisceglie, A. M., Martin, P., Kassianides, C., and Lisker-Melman, M., Recombinant interferon alfa therapy for chronic hepatitis C. A randomized, double-blind, placebo-controlled trial. N. Engl. J. Med. 321:1506–1510, 1989.CrossRefGoogle Scholar
  4. 4.
    Hagiwara, H., Hayashi, N., Mita, E., and Ueda, K., Detection of hepatitis C virus RNA in serum of patients with chronic hepatitis C treated with interferon—alpha. Hepatology. 15:37–41, 1992.CrossRefGoogle Scholar
  5. 5.
    Lai, M. Y., Kao, J. H., Yang, P. M., Wang, J. T., Chen, P. J., Chan, K. W, Chu, J. S., and Chen, D. S., Long-term efficacy of ribavirin plus interferon alfa in the treatment of chronic hepatitis C. Gastroenterology. 111:1307–1312, 1996.CrossRefGoogle Scholar
  6. 6.
    Reichard, O., Norkrans, G., Fryden, A., Braconier, J. H., Sonnerborg, A., and Weiland O. Randomised, double-blind, placebo-controlled trial of interferon α-2b with and without ribavirin for chronic hepatitis C. Lancet. 351:83–87, 1998.CrossRefGoogle Scholar
  7. 7.
    Manns, M. P., McHutchison, J. G., Gordon, S. C., Rustgi, V. K., Shiffman, M, Reindollar, R., Goodman, Z. D., Koury, K., Ling, M. H., and Albrecht, J. K. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 358:958–965, 2001.CrossRefGoogle Scholar
  8. 8.
    Fried, M. W., Schiffman, M. L., Reddy, K. R., Smith, C., Marinos, G., Goncales, F. L., Hãussinger, D., Diago, M., Carosi, G., Dhumeaux, D., Craxi, A., Lin, A., Hoffman, J., and Yu, J. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347:975–982, 2002.CrossRefGoogle Scholar
  9. 9.
    Duda, R. O., Hart, P. E & Stork, D. G. Pattern Classification (2nd ed.). Wiley Interscience. New York, NY, 2000.Google Scholar
  10. 10.
    Cristianini, N., and Shawe-Taylor, J. An Introduction to Support Vector Machines (and other kernel-based learning methods). Cambridge University Press. 2000.Google Scholar
  11. 11.
    EASL Intemational Consensus Conference on hepatitis C. Paris, 26-28, February 1999 Consensus statement. Journal of Hepatology. 30(5): 956–961, 1999.Google Scholar
  12. 12.
    Kiyosawa, K., Sodeyama, T., Tanaka, E., and Gibo, Y. Interrelationship of blood transfusion, non-A, non-B hepatitis and hepatocellular carcinoma: analysis by detection of antibody to hepatitis C virus. Hepatology. 12:671–675, 1990.CrossRefGoogle Scholar
  13. 13.
    Tong, M. J., el-Farra, N. S., Reikes, A. R., and Co, R. L. Clinical outcomes after transfusion-associated hepatitis C. N. Engl. J. Med. 332:1463–1466, 1995.CrossRefGoogle Scholar
  14. 14.
    Kanai, K., Kako, M., Aikawa, T., and Kumada, T. Clearance of serum hepatitis C virus RNA after interferon therapy in relation to virus genotype. Liver. 15:185–188, 1995.Google Scholar
  15. 15.
    Kiyosawa, K. The value of hepatitis C virus genotyping to epidemiological and clinical studies. J. Gastroenterol. Hepatol. 12:623–624, 1997.Google Scholar
  16. 16.
    Chayama, K., Tsubota, A., Kobayashi, M., and Okamoto, K. Pretreatment virus load and multiple amino acid substitutions in the interferon sensitivity-determining region predict the outcome of interferon treatment in patients with chronic genotype 1b hepatitis C virus infection. Hepatology. 25:745–749, 1997.CrossRefGoogle Scholar
  17. 17.
    Kanai, K., Kako, M., and Okamoto, H., HCV genotypes in chronic hepatitis C and response to interferon. Lancet. 339:1543, 1992.CrossRefGoogle Scholar
  18. 18.
    Yoshioka, K., Kakumu, S., Wakita, T., and Ishikawa, T. Detection of hepatitis C virus by polymerase chain reaction and response to interferon-α therapy: relationship to genotypes of hepatitis C virus. Hepatology. 16:293–299, 1992.CrossRefGoogle Scholar
  19. 19.
    Nousbaum, J. B., Pol, S., Naloas, B., and Landais, P. Hepatitis C virus type 1b(II) infection in France and Italy. Ann. Intern. Med. 122:161–168, 1995.Google Scholar
  20. 20.
    Davis, G. L., and Lau, J. Y. Factors predictive of a beneficial response to therapy of hepatitis C. Hepatology. 26(suppl):122S–127S, 1997.CrossRefGoogle Scholar
  21. 21.
    Kuo, G., Choo, Q. L., Alter, H. J., and Gitnick, G. L., An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science. 244:362–364, 1989CrossRefGoogle Scholar
  22. 22.
    Shiratori, S., Kato, N., Yokosuka, O., and Imazeki, F., Predictors of the efficacy of interferon therapy in chronic hepatitis C virus infection. Tokyo-Chiba Hepatitis Research Group. Gastroenterology. 113:558–566, 1997.CrossRefGoogle Scholar
  23. 23.
    Poynard, T., Bedossa, P., Chevallier, M., and Mathurin, P., A comparison of three interferon alfa-2b regimens for the long-term treatment of chronic non-A, non-B hepatitis. N. Engl. J. Med. 332:1457–1462, 1995.CrossRefGoogle Scholar
  24. 24.
    Lau, J. Y., Davis, G. L., Kniffen, J., and Qian, K. P., Significance of serum hepatitis C virus RNA levels in chronic hepatitis C. Lancet. 341:1501–1504, 1993.CrossRefGoogle Scholar
  25. 25.
    Bishop, C., M., Neural Networks for Pattern Recognition, Oxford University Press, 1995.Google Scholar
  26. 26.
    Takahashi, M., Saito, H., Higashimoto, M., Atsukawa, K., and Ishii, H. Benefit of hepatitis C virus core antigen assay in prediction of therapeutic response to interferon and ribavirin combination therapy. J. Clin Microbiol. 43(1):186–191, 2005.CrossRefGoogle Scholar
  27. 27.
    Hwang, Y., Chen, E. Y., Gu, Z. J., Chuang, W. L., Yu, M. L., Lai, M. Y., Chao, Y. C., Lee, C. M., Wang, J. H., Dai, C. Y., Shian-Jy Bey, M., Liao, Y. T., Chen, P. J., and Chen, D. S. Genetic predisposition of responsiveness to therapy for chronic hepatitis C. Pharmacogenomics. 7(5):697–709, 2006.CrossRefGoogle Scholar
  28. 28.
    Kim, S, R., Hayashi, Y., Yoon, S., Taniguchi, M., Yang, M. K., Kim, K. I., Kim, M. M., Saeki, K., Nukata, I., and Imoto, S. Prediction of efficacy of interferon treatment of chronic hepatitis C by multivariate analysis and a new classification. Pathol Int. 48(3):215–220, 1998.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Jun Yang
    • 1
  • Anto Satriyo Nugroho
    • 2
  • Kazunobu Yamauchi
    • 1
  • Kentaro Yoshioka
    • 3
  • Jiang Zheng
    • 1
  • Kai Wang
    • 1
  • Ken Kato
    • 1
  • Susumu Kuroyanagi
    • 4
  • Akira Iwata
    • 4
  1. 1.Department of Medical Information and Management Science, Graduate School of MedicineNagoya UniversityNagoyaJapan
  2. 2.School of Life System Science and TechnologyChukyo UniversityChukyoJapan
  3. 3.Hepato-Gastroenterology, School of MedicineFujita Health UniversityFujitaJapan
  4. 4.Department of Computer Science and EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations