A Convergent Finite Element Method for the Compressible Magnetohydrodynamics System

  • Qianqian Ding
  • Shipeng MaoEmail author


This paper is devoted to the study of finite element method for the isentropic compressible magnetohydrodynamics system. We employ quadratic finite elements to approximate the velocity and Nédélec edge elements to approximate the magnetic induction. The continuity equation is approximated by Discontinuous Galerkin method. Based on the renormalized scheme, we derive the stability of the proposed numerical scheme for compressible magnetohydrodynamics equations. With the help of the theory of the topological degree, the existence of solution to the numerical scheme is proved. Some techniques have to be adopted to improve the integrability of density so as to achieve strong convergence of the discrete density. As both meshwidth and timestep size tend to zero, we show that finite element solution converges to a global weak solution of the continuous problem. The results of this paper can be regarded as a numerical version of the existence analysis of the compressible MHD system.


Compressible magnetohydrodynamics Finite element method Discontinuous Galerkin scheme Stability Convergence 



The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper.


  1. 1.
    Alexandrov, A.F., Bogdankevich, L.S., Rukhadze, A.A.: Principles of Plasma Electrodynamics, Vol. 9 of Springer Series in Electrophysics. Springer, Berlin (1984). Translated from the RussianCrossRefGoogle Scholar
  2. 2.
    Baňas, L., Prohl, A.: Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations. Math. Comput. 79, 1957–1999 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  4. 4.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Vol. 15 of Texts in Applied Mathematics. Springer, New York (1994)CrossRefGoogle Scholar
  5. 5.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Vol. 15 of Springer Series in Computational Mathematics. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cabannes, H.: Theoretical Magnetofluiddynamics. Academic Press, New York (1970)Google Scholar
  7. 7.
    Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54, 1313–1340 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Chiuderi, C., Velli, M.: Basics of Plasma Astrophysics. Unitext for Physics. Springer, Milan (2015)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ciuperca, I.S., Feireisl, E., Jai, M., Petrov, A.: A rigorous derivation of the stationary compressible Reynolds equation via the Navier–Stokes equations. Math. Models Methods Appl. Sci. 28, 697–732 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31, 61–73 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Costabel, M., Dauge, M.: Singularities of Maxwell’s equations on polyhedral domains, in analysis, numerics and applications of differential and integral equations (Stuttgart, 1996). Pitman Res. Notes Math. Ser. Longman Harlow 379, 69–76 (1998)zbMATHGoogle Scholar
  13. 13.
    Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements. Numer. Math. 93, 239–277 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Inf. Recherche Opérationnelle Sér. Rouge 7, 33–75 (1973)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Dauge, M.: Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations. SIAM J. Math. Anal. 20, 74–97 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Dauge, M.: Singularities of corner problems and problems of corner singularities, in Actes du 30ème Congrès d’Analyse Numérique: CANum ’98 (Arles, 1998). ESAIM Proc. Soc. Math. Appl. Indust. Paris 6, 19–40 (1999)Google Scholar
  18. 18.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  19. 19.
    DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Dumbser, M., Casulli, V.: A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier–Stokes equations with general equation of state. Appl. Math. Comput. 272, 479–497 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Eymard, R., Gallouët, T., Herbin, R., Latché, J.C.: A convergent finite element-finite volume scheme for the compressible Stokes problem. II. The isentropic case. Math. Comput. 79, 649–675 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Feireisl, E.: Dynamics of Viscous Compressible Fluids, Vol. 26 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004)Google Scholar
  23. 23.
    Feireisl, E., Karper, T., Michálek, M.: Convergence of a numerical method for the compressible Navier–Stokes system on general domains. Numer. Math. 134, 667–704 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Feireisl, E., Karper, T.G., Pokorný, M.: Mathematical Theory of Compressible Viscous Fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham (2016). Analysis and Numerics, Lecture Notes in Mathematical Fluid MechanicsCrossRefzbMATHGoogle Scholar
  25. 25.
    Gallouët, T., Gastaldo, L., Herbin, R., Latché, J.-C.: An unconditionally stable pressure correction scheme for the compressible barotropic Navier–Stokes equations. M2AN Math. Model. Numer. Anal. 42, 303–331 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Gallouët, T., Herbin, R., Latché, J.-C.: A convergent finite element-finite volume scheme for the compressible Stokes problem. I. The isothermal case. Math. Comput. 78, 1333–1352 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Gerbeau, J.-F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  29. 29.
    Ginzburg, V.L.: Propagation of electromagnetic waves in plasma, Translated from the Russian by Royer and Roger; edited by Walter L. Sadowski, D.M. Gallik, Gordon and Breach Science Publishers, Inc., New York (1961)Google Scholar
  30. 30.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986). Theory and algorithmsCrossRefzbMATHGoogle Scholar
  31. 31.
    Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199, 2840–2855 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Hietel, D., Steiner, K., Struckmeier, J.: A finite-volume particle method for compressible flows. Math. Models Methods Appl. Sci. 10, 1363–1382 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28, 659–695 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot B=0\) exactly for MHD models. Numer. Math. 135, 371–396 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  39. 39.
    Karlsen, K.H., Karper, T.K.: A convergent nonconforming finite element method for compressible Stokes flow. SIAM J. Numer. Anal. 48, 1846–1876 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Karlsen, K.H., Karper, T.K.: Convergence of a mixed method for a semi-stationary compressible Stokes system. Math. Comput. 80, 1459–1498 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Karlsen, K.H., Karper, T.K.: A convergent mixed method for the Stokes approximation of viscous compressible flow. IMA J. Numer. Anal. 32, 725–764 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Kulikovskiy, A.G., Lyubimov, G.A.: Magnetohydrodynamics. Addison-Wesley, Reading (1965)Google Scholar
  43. 43.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of continuous media, Course of theoretical physics, vol. 8. Translated from the Russian by J. B. Sykes and J. S. Bell, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass (1960)Google Scholar
  44. 44.
    Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, vol. 10 of Oxford Lecture Series in Mathematics and Its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Compressible models. Oxford Science Publications (1998)Google Scholar
  45. 45.
    Monk, P.: Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)CrossRefGoogle Scholar
  46. 46.
    Moreau, R.: Magnetohydrodynamics, Vol. 3 of Fluid Mechanics and Its Applications. Kluwer Academic Publishers Group, Dordrecht (1990). Translated from the French by A. F. WrightGoogle Scholar
  47. 47.
    Pai, S.-I.: Magnetogasdynamics and Plasma Dynamics. Springer, Vienna (1962)CrossRefzbMATHGoogle Scholar
  48. 48.
    Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. M2AN Math. Model. Numer. Anal. 42, 1065–1087 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  51. 51.
    Stummel, F.: Basic compactness properties of nonconforming and hybrid finite element spaces. RAIRO Anal. Numér. 14, 81–115 (1980)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Toscani, G., Boffi, V., Rionero, S. (eds.): Mathematical Aspects of Fluid and Plasma Dynamics, Vol. 1460 of Lecture Notes in Mathematics. Springer, Berlin (1991)Google Scholar
  53. 53.
    Zarnowski, R., Hoff, D.: A finite-difference scheme for the Navier–Stokes equations of one-dimensional, isentropic, compressible flow. SIAM J. Numer. Anal. 28, 78–112 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  54. 54.
    Zhao, J., Hoff, D.: A convergent finite-difference scheme for the Navier–Stokes equations of one-dimensional, nonisentropic, compressible flow. SIAM J. Numer. Anal. 31, 1289–1311 (1994)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.NCMIS, LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, School of Mathematical ScienceUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations