Advertisement

A Homotopy Method with Adaptive Basis Selection for Computing Multiple Solutions of Differential Equations

  • Wenrui Hao
  • Jan Hesthaven
  • Guang Lin
  • Bin ZhengEmail author
Article

Abstract

The homotopy continuation method has been widely used to compute multiple solutions of nonlinear differential equations, but the computational cost grows exponentially based on the traditional finite difference and finite element discretizations. In this work, we presented a new method by constructing a spectral approximation space adaptively based on a greedy algorithm for nonlinear differential equations. Then multiple solutions were computed by the homotopy continuation method on this low-dimensional approximation space. Various numerical examples were given to illustrate the feasibility and the efficiency of this new approach.

Keywords

Multiple solutions Nonlinear differential equations Polynomial systems Homotopy continuation 

Notes

Acknowledgements

W. Hao’s research was supported by the American Heart Association (Grant 17SDG33660722) and National Science Foundation (Grant DMS-1818769). GL would like to gratefully acknowledge the support from National Science Foundation (DMS-1555072, DMS-1736364 and DMS-1821233). B. Zheng would like to acknowledge the support by Beijing Institute for Scientific and Engineering Computing and by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials and a Laboratory Directed Research and Development (LDRD) Program from Pacific Northwest National Laboratory. The PNNL is operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830.

References

  1. 1.
    Allgower, E., Bates, D., Sommese, A., Wampler, C.: Solution of polynomial systems derived from differential equations. Computing 76(1–2), 1–10 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Allgower, E., Cruceanu, S., Tavener, S.: Application of numerical continuation to compute all solutions of semilinear elliptic equations. Adv. Geom. 9(3), 371–400 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bates, D., Hauenstein, J., Sommese, A., Wampler, C.: Adaptive multiprecision path tracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bates, D., Hauenstein, J., Sommese, A., Wampler, C.: Stepsize control for path tracking. Contemp. Math. 496(3), 21–31 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bates, D., Hauenstein, J., Sommese, A., Wampler, C.: Numerically Solving Polynomial Systems with Bertini, vol. 25. SIAM, Philadelphia (2013)zbMATHGoogle Scholar
  6. 6.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multiprecision path tracking. SIAM J. Nume. Anal. 46(2), 722–746 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini, vol. 25. SIAM, Philadelphia (2013)zbMATHGoogle Scholar
  8. 8.
    Bauer, L., Keller, H.B., Reiss, E.: Multiple eigenvalues lead to secondary bifurcation. SIAM Rev. 17(1), 101–122 (1975)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bernardi, C., Maday, Y.: Spectral methods. Handb. Numer. Anal. 5, 209–485 (1997)MathSciNetGoogle Scholar
  10. 10.
    Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Braun, M., Golubitsky, M.: Differential Equations and Their Applications, vol. 4. Springer, New York (1983)Google Scholar
  12. 12.
    Breuer, B., McKenna, P., Plum, M.: Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differ. Equ. 195(1), 243–269 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Chen, C., Xie, Z.: Structure of multiple solutions for nonlinear differential equations. Sci. China Ser. A Math. 47(1), 172–180 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chen, F., Shen, J., Yu, H.: A new spectral element method for pricing european options under the black-scholes and merton jump diffusion models. J. Sci. Comput. 52(3), 499–518 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chen, Y., Hesthaven, J., Maday, Y., Rodrguez, J.: Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell’s problem. ESAIM Math. Model. Numer. Anal. 43(6), 1099–1116 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32(2), 970–996 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Chossat, P., Golubitsky, M.: Symmetry-increasing bifurcation of chaotic attractors. Physica D 32(3), 423–436 (1988)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Cristini, V., Li, X., Lowengrub, J., Wise, S.: Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol. 58(4), 723–763 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46(3), 191–224 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Fontelos, M., Friedman, A.: Symmetry-breaking bifurcations of free boundary problems in three dimensions. Asymptot. Anal. 35(3), 187–206 (2003)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Friedman, A.: Free boundary problems in biology. Philos. Trans. R. Soc. A 373(2050), 20140368 (2015)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Friedman, A., Hao, W.: A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors. Bull. Math. Biol. 77(5), 758–781 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Friedman, A., Hu, B.: Bifurcation from stability to instability for a free boundary problem arising in a tumor model. Arch. Ration. Mech. Anal. 180(2), 293–330 (2006)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Friedman, A., Hu, B.: Bifurcation for a free boundary problem modeling tumor growth by Stokes equation. SIAM J. Math. Anal. 39(1), 174–194 (2007)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Friedman, A., Reitich, F.: Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Trans. Am. Math. Soc. 353(4), 1587–1634 (2001)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Golubitsky, M., Stewart, I.: The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space, vol. 200. Springer, New York (2003)zbMATHGoogle Scholar
  27. 27.
    Golubitsky, M., Stewart, I.: Singularities and Groups in Bifurcation Theory, vol. 2. Springer, New York (2012)Google Scholar
  28. 28.
    Grepl, M., Patera, A.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM Math. Model. Numer. Anal. 39(1), 157–181 (2005)zbMATHGoogle Scholar
  29. 29.
    Haber, R., Unbehauen, H.: Structure identification of nonlinear dynamic systems survey on input/output approaches. Automatica 26(4), 651–677 (1990)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Hao, W., Crouser, E., Friedman, A.: Mathematical model of sarcoidosis. Proc. Nat. Acad. Sci. 111(45), 16065–16070 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Hao, W., Friedman, A.: The ldl-hdl profile determines the risk of atherosclerosis: a mathematical model. PLoS ONE 9(3), e90497 (2014)Google Scholar
  32. 32.
    Hao, W., Hauenstein, J., Hu, B., Liu, Y., Sommese, A., Zhang, Y.-T.: Bifurcation for a free boundary problem modeling the growth of a tumor with a necrotic core. Nonlinear Anal. Real World Appl. 13(2), 694–709 (2012)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Hao, W., Hauenstein, J., Hu, B., Sommese, A.: A bootstrapping approach for computing multiple solutions of differential equations. J. Comput. Appl. Math. 258, 181–190 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Hao, W., Hauenstein, J., Shu, C.-W., Sommese, A., Xu, Z., Zhang, Y.-T.: A homotopy method based on weno schemes for solving steady state problems of hyperbolic conservation laws. J. Comput. Phys. 250, 332–346 (2013)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Hao, W., Nepomechie, R., Sommese, A.: Completeness of solutions of bethe’s equations. Phys. Rev. E 88(5), 052113 (2013)Google Scholar
  36. 36.
    Hao, W., Nepomechie, R., Sommese, A.: Singular solutions, repeated roots and completeness for higher-spin chains. J. Stat. Mech Theory Exp. 2014(3), P03024 (2014)MathSciNetGoogle Scholar
  37. 37.
    Hao, W., Sommese, A., Zeng, Z.: Algorithm 931: an algorithm and software for computing multiplicity structures at zeros of nonlinear systems. ACM Trans. Math. Softw. TOMS 40(1), 5–20 (2013)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Hou, T., Lowengrub, J., Shelley, M.: Boundary integral methods for multicomponent fluids and multiphase materials. J. Comput. Phys. 169(2), 302–362 (2001)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Li, T.-Y., Sauer, T., Yorke, J.: The Cheater’s homotopy: an efficient procedure for solving systems of polynomial equations. SIAM J. Numer. Anal. 26(5), 1241–1251 (1989)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Li, T.-Y., Zeng, Z.: Homotopy-determinant algorithm for solving nonsymmetric eigenvalue problems. Math. Comput. 59(200), 483–502 (1992)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Morgan, A., Sommese, A.: Computing all solutions to polynomial systems using homotopy continuation. Appl. Math. Comput. 24(2), 115–138 (1987)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Morgan, A., Sommese, A.: A homotopy for solving general polynomial systems that respects m-homogeneous structures. Appl. Math. Comput. 24(2), 101–113 (1987)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Peaceman, D., Rachford, H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Pearson, J.: Complex patterns in a simple system. Science 261(3), 189–189 (1993)Google Scholar
  45. 45.
    Pousin, J., Rappaz, J.: Consistency, stability, a priori and a posteriori errors for petrov-galerkin methods applied to nonlinear problems. Numer. Math. 69(2), 213–231 (1994)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Rabier, P., Rheinboldt, W.: On a computational method for the second fundamental tensor and its application to bifurcation problems. Numer. Math. 57(1), 681–694 (1990)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Rheinboldt, W.: Numerical methods for a class of finite dimensional bifurcation problems. SIAM J. Numer. Anal. 15(1), 1–11 (1978)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Rheinboldt, W.: Numerical analysis of continuation methods for nonlinear structural problems. Comput. Struct. 13(1), 103–113 (1981)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Rheinboldt, W., Burkardt, J.: A locally parameterized continuation process. ACM Trans. Math. Softw. TOMS 9(2), 215–235 (1983)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 1 (2007)Google Scholar
  51. 51.
    Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, New York (2011)zbMATHGoogle Scholar
  53. 53.
    Smith, G.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1985)Google Scholar
  54. 54.
    Sommese, A., Verschelde, J., Wampler, C.: Homotopies for intersecting solution components of polynomial systems. SIAM J. Numer. Anal. 42(4), 1552–1571 (2004)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Sommese, A., Verschelde, J., Wampler, C.: An intrinsic homotopy for intersecting algebraic varieties. J. Complex. 21(4), 593–608 (2005)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Sommese, A., Wampler, C.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science, vol. 99. World Scientific, Singapore (2005)zbMATHGoogle Scholar
  57. 57.
    Strogatz, S.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview press, Boulder (2014)zbMATHGoogle Scholar
  58. 58.
    Turton, R., Bailie, R., Whiting, W., Shaeiwitz, J.: Analysis, Synthesis and Design of Chemical Processes. Pearson Education, London (2008)Google Scholar
  59. 59.
    Veroy, K., Prud’Homme, C., Rovas, D., Patera, A.: A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: 16th AIAA Computational Fluid Dynamics Conference, p. 3847 (2003)Google Scholar
  60. 60.
    Xu, J.: Two-grid discretization techniques for linear and nonlinear pdes. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Zhang, X., Zhang, J., Yu, B.: Eigenfunction expansion method for multiple solutions of semilinear elliptic equations with polynomial nonlinearity. SIAM J. Numer. Anal. 51(5), 2680–2699 (2013)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Zhou, J.: Solving multiple solution problems: computational methods and theory revisited. Commun. Appl. Math. 3(1), 1–31 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  2. 2.Computational Mathematics and Simulation ScienceÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA
  4. 4.Beijing Institute for Scientific and Engineering ComputingBeijing University of TechnologyBeijingChina

Personalised recommendations